Back to Search Start Over

Transition Metal-Mediated Syntheses of Yohimbane and Indolizidine Alkaloids

Authors :
Knölker, Hans-Joachim
Schinzer, Dieter
Metz, Peter
Agarwal, Sameer
Knölker, Hans-Joachim
Schinzer, Dieter
Metz, Peter
Agarwal, Sameer
Publication Year :
2005

Abstract

Polycyclic nitrogen containing heterocycles form the basic skeleton of numerous alkaloids and physiologically active drugs. Alloyohimbane was obtained from 3,4-dihydro-â-carboline using an iron-mediated [2+2+1] cycloaddition as the key-step. The bis-TMS-diyne was conveniently obtained by the C-alkylation of 3,4-dihydro-â-carboline followed by N-alkylation. Demetalation of the iron-complex followed by hydrogenation, E-ring expansion, and reduction provided alloyohimbane, a structurally and biologically interesting substance, via a linear eight-step sequence in 7% overall yield based on 3,4-dihydro-â-carboline. Another sequence provided (±)-alloyohimbane and (±)-3-epi-alloyohimbane in nine steps. The pyrrole unit occurs in a variety of naturally occurring compounds, pharmaceutical products and polymers. A novel two-step procedure for the synthesis of pyrroles by addition of a propargyl Grignard reagent to a Schiff base and subsequent silver(I)-promoted oxidative cyclization of the resulting homopropargylamine has been developed. The generality of this reaction was proven by the synthesis of a broad variety of substituted pyrroles using silver(I)-promoted cyclization. A three-step synthesis of (±)-harmicine, a natural product isolated from the Malaysian plant Kopsia griffithii having strong anti-leishmania activity, from 3,4-dihydro-â-carboline is achieved by addition of 3-trimethylsilylpropargyl Grignard reagent, Ag(I)-promoted oxidative cyclization to a pyrrole, and chemoselective hydrogenation of pyrrole ring. Total synthesis of anti-tumor active crispine A and biologically active 1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline have been achieved in three steps using silver(I)-promoted oxidative cyclization as key step.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1135774613
Document Type :
Electronic Resource