Back to Search Start Over

Shaping magnetic felds with superconductor-metamaterial hybrids

Authors :
Sánchez Moreno, Álvaro
Prat Camps, Jordi
Universitat Autònoma de Barcelona. Departament de Física
Sánchez Moreno, Álvaro
Prat Camps, Jordi
Universitat Autònoma de Barcelona. Departament de Física
Publication Year :
2015

Abstract

Premi Extraordinari de Doctorat concedit pels programes de doctorat de la UAB per curs acadèmic 2017-2018<br />El magnetisme és molt important en diverses àrees de la ciència i la tecnologia, cobrint un rang molt ampli d'escales i temes. En aquesta tesis presentem el desenvolupament teòric i la realització experimental de diversos dispositius nous pel control dels camps magnètics. Pel disseny d'aquests s'han emprat diverses estratègies; la teoria de l'òptica de transformació s'ha combinat amb resultats obtinguts directament de les equacions de Maxwell, i les propostes idealitzades han esdevingut dispositius reals mitjançant la combinació de materials ferromagnètics i superconductors formant diferents metamaterials magnètics. En primer lloc presentem l'estudi referent a les capes invisibilitat magnètica. De manera anàloga a com actuaria una capa d'invisibilitat per llum visible, una capa d'invisibilitat magnètica evita que els camps penetrin al seu interior al mateix temps que la capa i el seu contingut són magnèticament indetectables des de l'exterior. En aquesta tesis presentem el desenvolupament de diferents dissenys de capa d'invisibilitat, centrant-nos en un sistema bicapa superconductor-ferromagnètic. Aquesta bicapa ha estat construïda i provada amb èxit. La concentració de camps magnètics també ha estat estudiada. Hem dissenyat una capa concentradora magnètica cilíndrica, la qual concentra els camps magnètics aplicats externs en el seu orifici interior. Alhora, aquesta mateixa capa expulsa el camp magnètic cap a l'exterior quan la font de camp se situa a l'orifici interior. S'han fabricat algunes d'aquestes capes concentradores emprant materials superconductors i ferromagnètics i les seves propietats s'han verificat experimentalment. A més a més també hem demostrat que les capes permeten incrementar l'acoblament magnètic entre circuits. Aquesta propietat l'hem aplicat experimentalment per demostrar que les capes concentradores permeten millorar la transmissió d'energia elèctrica sense fils. Seguidament hem estudiat la transmissió de camps magnètics. A diferència de les<br />Magnetism is very important in various areas of science and technology, covering a wide range of scales and topics. In this thesis we present the theoretical development and the experimental realization of various novel devices to control magnetic fields. Their design is based on different strategies; transformation optics theory is combined with solutions directly obtained from Maxwell equations, and ideal designs are turned into real devices combining superconducting and ferromagnetic materials forming different magnetic metamaterials. We first study the cloaking of magnetic fields. Analogous to the concept of an "invisibility" cloak for light, a cloak for static magnetic fields prevents fields to penetrate in its interior and makes the cloak itself and its content magnetically undetectable from the exterior. Different designs of magnetic cloak are developed and a bilayer superconductor-ferromagnetic cylindrical cloak is experimentally built and tested. The concentration of magnetic fields is also addressed. A cylindrical magnetic concentrating shell is designed, demonstrating that it concentrates external fields in its interior hole and it also expels the field of internal sources towards the exterior. Different concentrating shells are experimentally built using superconducting and ferromagnetic materials and their properties are validated. We also demonstrate that concentrating shells increase the magnetic coupling between circuits. We apply this property to experimentally demonstrate they enhance the wireless transfer of power. The transfer of static magnetic fields is also studied. Different from electromagnetic waves that easily propagate in waveguides or optical fibers, magnetic fields rapidly decay as one moves far from the source. To overcome this limitation we develop the magnetic hose, a design that allows to transfer static magnetic fields to arbitrary distances and can be realized with an adequate combination of superconducting and ferromagnetic shell

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1133029181
Document Type :
Electronic Resource