Back to Search Start Over

Discovery of spatio-temporal patterns from location based social networks

Authors :
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Béjar Alonso, Javier
Álvarez Napagao, Sergio
Garcia Gasulla, Dario
Gómez Sebastià, Ignasi
Oliva Felipe, Luis Javier
Tejeda Gómez, José Arturo
Vázquez Salceda, Javier
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Béjar Alonso, Javier
Álvarez Napagao, Sergio
Garcia Gasulla, Dario
Gómez Sebastià, Ignasi
Oliva Felipe, Luis Javier
Tejeda Gómez, José Arturo
Vázquez Salceda, Javier
Publication Year :
2014

Abstract

Location Based Social Networks (LBSN) have become an interesting source for mining user behavior. These networks (e.g. Twitter, Instagram or Foursquare) collect spatio-temporal data from users in a way that they can be seen as a set of collective and distributed sensors on a geographical area. Processing this information in different ways could result in patterns useful for several application domains. These patterns include simple or complex user visits to places in a city or groups of users that can be described by a common behavior. The domains of application range from the recommendation of points of interest to visit and route planning for touristic recommender systems to city analysis and planning. This paper presents the analysis of data collected for several months from such LBSN inside the geographical area of two large cities. The goal is to obtain by means of unsupervised data mining methods sets of patterns that describe groups of users in terms of routes, mobility patterns and behavior profiles that can be useful for city analysis and mobility decisions.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
10 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1132975031
Document Type :
Electronic Resource