Back to Search Start Over

KnowNet: building a large net of knowledge from the web

Authors :
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural
Cuadros Oller, Montserrat
Rigau Claramunt, German
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural
Cuadros Oller, Montserrat
Rigau Claramunt, German
Publication Year :
2008

Abstract

This paper presents a new fully automatic method for building highly dense and accurate knowledge bases from existing semantic resources. Basically, the method uses a wide-coverage and accurate knowledge-based Word Sense Disambiguation algorithm to assign the most appropriate senses to large sets of topically related words acquired from the web. KnowNet, the resulting knowledge-base which connects large sets of semantically related concepts is a major step towards the autonomous acquisition of knowledge from raw corpora. In fact, KnowNet is several times larger than any available knowledge resource encoding relations between synsets, and the knowledge KnowNet contains outperform any other resource when is empirically evaluated in a common framework.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
8 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1132953419
Document Type :
Electronic Resource