Back to Search Start Over

Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles

Authors :
Nicholson, David P.
Wilson, Samuel T.
Doney, Scott C.
Karl, David M.
Nicholson, David P.
Wilson, Samuel T.
Doney, Scott C.
Karl, David M.
Publication Year :
2015

Abstract

© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 4032–4039, doi:10.1002/2015GL063065.<br />Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg−1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m−3 d−1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m−2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.<br />The authors acknowledge support from the National Science Foundation (NSF) through an NSF Science and Technology Center, the Center for Microbial Oceanography Research and Education (C-MORE; NSF EF-0424599). D.N. also was supported by NSF (OCE-1129644) and an Independent Study Award from the Woods Hole Oceanographic Institution (WHOI). D.M.K. was also supported by the Gordon and Betty Moore Foundation. WHOI Summer Student Fellow Cole Stites-Clayton, Stanford University, contributed to early stages of Seaglider data analysis and was supported by an NSF REU grant to WHOI (OCE-1156952).

Details

Database :
OAIster
Notes :
application/pdf, en_US
Publication Type :
Electronic Resource
Accession number :
edsoai.on1130869965
Document Type :
Electronic Resource