Back to Search Start Over

Estimating the error distribution in nonparametric multiple regression with applications to model testing

Authors :
UCL - SSH/IMAQ - Institut multidisciplinaire pour la modélisation et l'analyse quantitative
Neumeyer, Natalie
Van Keilegom, Ingrid
UCL - SSH/IMAQ - Institut multidisciplinaire pour la modélisation et l'analyse quantitative
Neumeyer, Natalie
Van Keilegom, Ingrid
Source :
Journal of Multivariate Analysis, Vol. 101, no. 5, p. 1067-1078 (2010)
Publication Year :
2010

Abstract

In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Gaussian process is proved. We also consider various applications for testing model assumptions in nonparametric multiple regression. The model tests obtained are able to detect local alternatives that converge to zero at an n(-12)-rate, independent of the covariate dimension. We consider in detail a test for additivity of the regression function. (C) 2010 Elsevier Inc. All rights reserved.

Details

Database :
OAIster
Journal :
Journal of Multivariate Analysis, Vol. 101, no. 5, p. 1067-1078 (2010)
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1130570752
Document Type :
Electronic Resource