Back to Search
Start Over
High Expression of Thyroid Hormone Receptors and Mitochondrial Glycerol-3-phosphate Dehydrogenase in the Liver Is Linked to Enhanced Fatty Acid Oxidation in Lou/C, a Rat Strain Resistant to Obesity
- Source :
- Journal of Biological Chemistry, Vol. 284, no. 7, p. 4308-4316 (2009)
- Publication Year :
- 2009
-
Abstract
- Besides its well recognized role in lipid and carbohydrate metabolisms, glycerol is involved in the regulation of cellular energy homeostasis via glycerol-3-phosphate, a key metabolite in the translocation of reducing power across the mitochondrial inner membrane with mitochondrial glycerol-3-phosphate dehydrogenase. Here, we report a high rate of gluconeogenesis from glycerol and fatty acid oxidation in hepatocytes from Lou/C, a peculiar rat strain derived from Wistar, which is resistant to age- and diet-related obesity. This feature, associated with elevated cellular respiration and cytosolic ATP/ADP and NAD(+)/NADH ratios, was linked to a high expression and activity of mitochondrial glycerol-3-phosphate dehydrogenase. Interestingly, this strain exhibited high expression and protein content of thyroid hormone receptor, whereas circulating thyroid hormone levels were slightly decreased and hepatic thyroid hormone carrier MCT-8 mRNA levels were not modified. We propose that an enhanced liver thyroid hormone receptor in Lou/C may explain its unique resistance to obesity by increasing fatty acid oxidation and lowering liver oxidative phosphorylation stoichiometry at the translocation of reducing power into mitochondria.
Details
- Database :
- OAIster
- Journal :
- Journal of Biological Chemistry, Vol. 284, no. 7, p. 4308-4316 (2009)
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1130569595
- Document Type :
- Electronic Resource