Back to Search Start Over

Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery

Authors :
Schepaschenko, D.
See, L.
Lesiv, M.
Bastin, J.-F.
Mollicone, D.
Tsendbazar, N.-E.
Bastin, L.
McCallum, I.
Laso Bayas, J.C.
Baklanov, A.
Perger, Ch.
Dürauer, M.
Fritz, S.
Schepaschenko, D.
See, L.
Lesiv, M.
Bastin, J.-F.
Mollicone, D.
Tsendbazar, N.-E.
Bastin, L.
McCallum, I.
Laso Bayas, J.C.
Baklanov, A.
Perger, Ch.
Dürauer, M.
Fritz, S.
Publication Year :
2019

Abstract

The land area covered by freely available very high-resolution (VHR) imagery has grown dramatically over recent years, which has considerable relevance for forest observation and monitoring. For example, it is possible to recognize and extract a number of features related to forest type, forest management, degradation and disturbance using VHR imagery. Moreover, time series of medium-to-high-resolution imagery such as MODIS, Landsat or Sentinel has allowed for monitoring of parameters related to forest cover change. Although automatic classification is used regularly to monitor forests using medium-resolution imagery, VHR imagery and changes in web-based technology have opened up new possibilities for the role of visual interpretation in forest observation. Visual interpretation of VHR is typically employed to provide training and/or validation data for other remote sensing-based techniques or to derive statistics directly on forest cover/forest cover change over large regions. Hence, this paper reviews the state of the art in tools designed for visual interpretation of VHR, including Geo-Wiki, LACO-Wiki and Collect Earth as well as issues related to interpretation of VHR imagery and approaches to quality assurance. We have also listed a number of success stories where visual interpretation plays a crucial role, including a global forest mask harmonized with FAO FRA country statistics; estimation of dryland forest area; quantification of deforestation; national reporting to the UNFCCC; and drivers of forest change.

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1130067340
Document Type :
Electronic Resource