Back to Search
Start Over
Understanding the Role of Sonochemical and Sono-electrochemical Parameters in Semiconductor Cleaning
- Publication Year :
- 2015
-
Abstract
- Over the years, megasonic energy has been widely used in the semiconductor industry for effective particle removal from surfaces after chemical mechanical planarization (CMP) processes. As a sound wave propagates through a liquid medium, it generates two effects, namely, acoustic streaming and acoustic cavitation. Acoustic streaming refers to time independent motion of liquid due to viscous attenuation, while cavitation arises from the bubble activity generated due to the difference in the pressure field of the propagating wave. Cavitation can be classified into two categories, (1) stable and (2) transient cavitation. When a bubble undergoes continuous oscillations over repeated cycles it is known to exhibit stable cavitation, while a sudden collapse is referred to as transient cavitation. Due to the rapid implosion of the transient cavity, drastic conditions of temperature (5,000-10,000 K) and pressure (hundreds of bars) are generated within and surrounding the bubble. If this phenomenon occurs close to the substrate, it causes damage to the sub-micron features. In this study, emphasis has been laid on understanding acoustic cavitation as it is critical to achieving high cleaning efficiency without any feature damage. The research work described in this dissertation has been divided into three sections. In the first part of the dissertation, the development of a novel sono-electrochemical technique for removal of sub-micron (300 nm) silica particles from conductive surfaces (Ta) has been discussed. The technique employs megasonic field at low pulse time and duty cycle in conjunction with an applied electrical field for achieving superior particle removal efficiency (PRE). In order to demonstrate the effectiveness of the sono-electrochemical technique, cleaning studies were conducted using 300 nm silica particles both in the presence and absence of an applied electrical field in air and argon saturated solutions. In the presence of the megasonic field (0.5 W/cm², 10
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1118682501
- Document Type :
- Electronic Resource