Back to Search Start Over

Aqueous alpha-lipoic acid solutions for removal of arsenic and mercury from materials used for museum artifacts

Authors :
Odegaard, Nancy
Riley, Mark
Lynch, David
Ela, Wendell
Cross, Peggi
Odegaard, Nancy
Riley, Mark
Lynch, David
Ela, Wendell
Cross, Peggi
Publication Year :
2007

Abstract

Recorded use of pesticides in the conservation of artifacts dates back to the 16th century. Museums today are faced with a tremendous task of identification and remediation of pesticides from artifacts in order to protect museum workers and the general public. In addition, artifacts are being repatriated by Native American tribes for use in cultural ceremonies which may subject the practitioner to health risks. Arsenic and mercury salts are among the pesticides that were used that are highly persistent and toxic. The primary challenge lies in removing these hazardous and persistent metals without damaging the materials or pigments on the objects.Concentrated aqueous alpha-lipoic acid solutions were developed for removing arsenic and mercury pesticides from materials commonly used in museum artifacts. The alpha-lipoic acid solutions were reduced using natural sunlight or laboratory ultraviolet lamps to enhance the binding of arsenic. The solubility of alpha-lipoic acid in various organic and inorganic solutions was determined and environmental parameters that impact the reduction and solubility, such as pH and temperature, were examined. The kinetics of the reaction of arsenic (III) with reduced lipoic acid was examined by varying the reduced lipoic acid, base and arsenic concentration as well as temperature and stirring conditions. The results indicated that the reaction occurs at a moderate rate primarily within 8 seconds in air. The reaction is chemically rate limited enhanced at higher temperatures and lower pH. Aerobic conditions significantly decreased the extent of the reaction with increased stirring rate. This impact was minimized by using a nitrogen environment or by limiting agitation during the reaction step.The methods developed were capable of removing up to 1000 µg/cm2 arsenic (of sodium arsenite) from simulated artifacts to levels near the lower detection limit of the X-ray Fluorescence Spectrometer (1 µg/cm2) without leaving detectable residues acc

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1118673269
Document Type :
Electronic Resource