Back to Search Start Over

A Note on Perturbation Results for Learning Empirical Operators

Authors :
Tomaso Poggio
Center for Biological and Computational Learning (CBCL)
De Vito, Ernesto
Belkin, Mikhail
Rosasco, Lorenzo
Tomaso Poggio
Center for Biological and Computational Learning (CBCL)
De Vito, Ernesto
Belkin, Mikhail
Rosasco, Lorenzo
Publication Year :
2008

Abstract

A large number of learning algorithms, for example, spectral clustering, kernel Principal Components Analysis and many manifold methods are based on estimating eigenvalues and eigenfunctions of operators defined by a similarity function or a kernel, given empirical data. Thus for the analysis of algorithms, it is an important problem to be able to assess the quality of such approximations. The contribution of our paper is two-fold: 1. We use a technique based on a concentration inequality for Hilbert spaces to provide new much simplified proofs for a number of results in spectral approximation. 2. Using these methods we provide several new results for estimating spectral properties of the graph Laplacian operator extending and strengthening results from [26].

Details

Database :
OAIster
Notes :
22 p., application/pdf, application/postscript
Publication Type :
Electronic Resource
Accession number :
edsoai.on1117646624
Document Type :
Electronic Resource