Back to Search Start Over

A two-dimensional glacier-fjord coupled model applied to estimate submarine melt rates and front position changes of Hansbreen, Svalbard

Authors :
Andrés Marruedo, Eva de
Otero García, Jaime
Navarro Valero, Francisco José
Prominska, Agnieszka
Lapazaran Izargain, Javier Jesús
Walczowski, Waldemar
Andrés Marruedo, Eva de
Otero García, Jaime
Navarro Valero, Francisco José
Prominska, Agnieszka
Lapazaran Izargain, Javier Jesús
Walczowski, Waldemar
Source :
Journal of Glaciology, ISSN 0022-1430, 2018, Vol. 64, No. 247
Publication Year :
2018

Abstract

We have developed a two-dimensional coupled glacier–fjord model, which runs automatically using Elmer/Ice and MITgcm software packages, to investigate the magnitude of submarine melting along a vertical glacier front and its potential influence on glacier calving and front position changes. We apply this model to simulate the Hansbreen glacier–Hansbukta proglacial–fjord system, Southwestern Svalbard, during the summer of 2010. The limited size of this system allows us to resolve some of the small-scale processes occurring at the ice–ocean interface in the fjord model, using a 0.5 s time step and a 1 m grid resolution near the glacier front. We use a rich set of field data spanning the period April–August 2010 to constrain, calibrate and validate the model. We adjust circulation patterns in the fjord by tuning subglacial discharge inputs that best match observed temperature while maintaining a compromise with observed salinity, suggesting a convectively driven circulation in Hansbukta. The results of our model simulations suggest that both submarine melting and crevasse hydrofracturing exert important controls on seasonal frontal ablation, with submarine melting alone not being sufficient for reproducing the observed patterns of seasonal retreat. Both submarine melt and calving rates accumulated along the entire simulation period are of the same order of magnitude, ∼100 m. The model results also indicate that changes in submarine melting lag meltwater production by 4–5 weeks, which suggests that it may take up to a month for meltwater to traverse the englacial and subglacial drainage network.

Details

Database :
OAIster
Journal :
Journal of Glaciology, ISSN 0022-1430, 2018, Vol. 64, No. 247
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1111584616
Document Type :
Electronic Resource