Back to Search Start Over

Automated Diatom Classification (Part A): Handcrafted Feature Approaches

Authors :
Consejo Superior de Investigaciones Científicas (España)
Ministerio de Economía y Competitividad (España)
Bueno, Gloria
Déniz, Óscar
Pedraza, Aníbal
Ruiz-Santaquiteria, Jesús
Salido, Jesús
Cristóbal, Gabriel
Borrego-Ramos, María
Blanco, Saúl
Consejo Superior de Investigaciones Científicas (España)
Ministerio de Economía y Competitividad (España)
Bueno, Gloria
Déniz, Óscar
Pedraza, Aníbal
Ruiz-Santaquiteria, Jesús
Salido, Jesús
Cristóbal, Gabriel
Borrego-Ramos, María
Blanco, Saúl
Publication Year :
2017

Abstract

This paper deals with automatic taxa identification based on machine learning methods. The aim is therefore to automatically classify diatoms, in terms of pattern recognition terminology. Diatoms are a kind of algae microorganism with high biodiversity at the species level, which are useful for water quality assessment. The most relevant features for diatom description and classification have been selected using an extensive dataset of 80 taxa with a minimum of 100 samples/taxon augmented to 300 samples/taxon. In addition to published morphological, statistical and textural descriptors, a new textural descriptor, Local Binary Patterns (LBP), to characterize the diatom’s valves, and a log Gabor implementation not tested before for this purpose are introduced in this paper. Results show an overall accuracy of 98.11% using bagging decision trees and combinations of descriptors. Finally, some phycological features of diatoms that are still difficult to integrate in computer systems are discussed for future work.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1105209875
Document Type :
Electronic Resource