Back to Search Start Over

Thermal properties of halogen-ethane glassy crystals: Effects of orientational disorder and the role of internal molecular degrees of freedom

Authors :
Ministerio de Ciencia e Innovación (España)
Generalitat de Catalunya
Comunidad de Madrid
Russian Foundation for Basic Research
Vdovichenko, G.A.
Krivchikov, A.I.
Korolyuk, O.A.
Tamarit, J.L.
Pardo, L.C.
Rovira-Esteva, M.
Bermejo, Francisco Javier
Hassaine, M.
Ramos, M.A.
Ministerio de Ciencia e Innovación (España)
Generalitat de Catalunya
Comunidad de Madrid
Russian Foundation for Basic Research
Vdovichenko, G.A.
Krivchikov, A.I.
Korolyuk, O.A.
Tamarit, J.L.
Pardo, L.C.
Rovira-Esteva, M.
Bermejo, Francisco Javier
Hassaine, M.
Ramos, M.A.
Publication Year :
2015

Abstract

© 2015 AIP Publishing LLC. The thermal conductivity, specific heat, and specific volume of the orientational glass former 1,1,2-trichloro-1,2,2-trifluoroethane (CCl2F–CClF2, F-113) have been measured under equilibrium pressure within the low-temperature range, showing thermodynamic anomalies at ca. 120, 72, and 20 K. The results are discussed together with those pertaining to the structurally related 1,1,2,2-tetrachloro-1,2-difluoroethane (CCl2F–CCl2F, F-112), which also shows anomalies at 130, 90, and 60 K. The rich phase behavior of these compounds can be accounted for by the interplay between several of their degrees of freedom. The arrest of the degrees of freedom corresponding to the internal molecular rotation, responsible for the existence of two energetically distinct isomers, and the overall molecular orientation, source of the characteristic orientational disorder of plastic phases, can explain the anomalies at higher and intermediate temperatures, respectively. The soft-potential model has been used as the framework to describe the thermal properties at low temperatures. We show that the low-temperature anomaly of the compounds corresponds to a secondary relaxation, which can be associated with the appearance of Umklapp processes, i.e., anharmonic phonon-phonon scattering, that dominate thermal transport in that temperature range.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1104782110
Document Type :
Electronic Resource