Back to Search Start Over

Influence of common synaptic input to motor neurons on the neural drive to muscle in essential tremor

Authors :
European Commission
Gallego, Juan Álvaro
Dideriksen, Jakob L.
Holobar, Ales
Ibáñez Pereda, Jaime
Pons Rovira, José Luis
Louis, Elan D.
Rocón, Eduardo
Farina, Dario
European Commission
Gallego, Juan Álvaro
Dideriksen, Jakob L.
Holobar, Ales
Ibáñez Pereda, Jaime
Pons Rovira, José Luis
Louis, Elan D.
Rocón, Eduardo
Farina, Dario
Publication Year :
2014

Abstract

Tremor in essential tremor (ET) is generated by pathological oscillations at 4 to 12 Hz, likely originating at cerebello-thalamo-cortical pathways. However, the way in which tremor is represented in the output of the spinal cord circuitries is largely unknown because of the difficulties in identifying the behavior of individual motor units from tremulous muscles. By using novel methods for the decomposition of multichannel surface EMG, we provide a systematic analysis of the discharge properties of motor units in 9 ET patients, with concurrent recordings of EEG activity. This analysis allowed inferring the contribution of common synaptic inputs to motor neurons in ET. Motor unit short-term synchronization was significantly greater in ET patients than in healthy subjects. Further, the strong association between the degree of synchronization and the peak in coherence between motor unit spike trains at the tremor frequency indicated that the high synchronization levels were generated mainly by common synaptic inputs specifically at the tremor frequency. The coherence between EEG and motor unit spike trains demonstrated the presence of common cortical input to the motor neurons at the tremor frequency. Nonetheless, the strength of this input was uncorrelated to the net common synaptic input at the tremor frequency, suggesting a contribution of spinal afferents or secondary supraspinal pathways in projecting common input at the tremor frequency. These results provide the first systematic analysis of the neural drive to the muscle in ET and elucidate some of its characteristics that determine the pathological tremulous muscle activity.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1104762853
Document Type :
Electronic Resource