Back to Search
Start Over
Waveguide Surface Coherent anti-Stokes Raman Scattering Spectroscopy and optical second harmonic generation spectroscopy of molecules adsorbed on metal oxide surfaces.
- Publication Year :
- 1988
-
Abstract
- This dissertation reports the application of nonlinear optical effects for the investigation of vibrational and electronic spectroscopy of molecules adsorbed on thin film metal oxide surfaces and metal oxide surfaces. The main emphasis of the experiments cited here is to introduce the recently developed multi-photon technique, Waveguide Surface Coherent anti-Stokes Raman Scattering Spectroscopy (WSCARS), to the scientific community. Planar optical waveguides have been utilized to generate large optical field enhancements on metal oxide surfaces. Guided waves have been employed to obtain the surface coherent anti-Stokes Raman scattering spectra of pyridine, phenol, benzene, methanol, CD₃OD, 2,4-pentadione, oxygen, ammonia and ND₃ adsorbed onto a ZnO (0001) surface. Vibrational spectra of transient species (O₂⁻) adsorbed on ZnO (0001) surface are also presented. Furthermore, the WSCARS has been used to monitor catalytic hydrogenation of ethylene adsorbed on ZnO (0001) surface. The WSCARS technique is compared with the other vibrational surface probes. Future directions and limitations of the technique are also discussed. Electronic spectra of surface bound species have been examined by resonantly enhanced surface second harmonic generation (SSHG). SHG spectra of trans-cinnamic acid adsorbed on optically cleaned fused silica have been obtained at room temperature and at 4 K. Surface second harmonic generation has been applied to study the adsorption of water and acetone onto thermally grown silicon dioxide/silicon surface. SSHG has been successfully applied to monitor photo-oxidation and photo-reduction of a rutile (110) surface. Experiments are described, data are presented, and surface-adsorbate binding modes are discussed.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1104348184
- Document Type :
- Electronic Resource