Back to Search Start Over

SoilGrids250m: Global gridded soil information based on machine learning

Authors :
Hengl, Tomislav
de Jesus, Jorge Mendes
Heuvelink, Gerard B. M.
Gonzalez, Maria Ruiperez
Kilibarda, Milan
Blagotić, Aleksandar
Shangguan, Wei
Wright, Marvin N.
Geng, Xiaoyuan
Bauer-Marschallinger, Bernhard
Guevara, Mario Antonio
Vargas, Rodrigo
MacMillan, Robert A.
Batjes, Niels H.
Leenaars, Johan G. B.
Ribeiro, Eloi
Wheeler, Ichsani
Mantel, Stephan
Kempen, Bas
Hengl, Tomislav
de Jesus, Jorge Mendes
Heuvelink, Gerard B. M.
Gonzalez, Maria Ruiperez
Kilibarda, Milan
Blagotić, Aleksandar
Shangguan, Wei
Wright, Marvin N.
Geng, Xiaoyuan
Bauer-Marschallinger, Bernhard
Guevara, Mario Antonio
Vargas, Rodrigo
MacMillan, Robert A.
Batjes, Niels H.
Leenaars, Johan G. B.
Ribeiro, Eloi
Wheeler, Ichsani
Mantel, Stephan
Kempen, Bas
Source :
PLOS One
Publication Year :
2017

Abstract

This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods D random forest and gradient boosting and/or multinomial logistic regression D as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10 -fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of method

Details

Database :
OAIster
Journal :
PLOS One
Notes :
PLOS One
Publication Type :
Electronic Resource
Accession number :
edsoai.on1104075130
Document Type :
Electronic Resource