Back to Search Start Over

Identificación y validación funcional de nuevos genes y mutaciones asociadas a la etiología de la insuficiencia ovárica primaria (IOP) : implicación de los genes BMP15, BMPR2, MSH4, ATG7, ATG9A y NOTCH2

Authors :
Laissue, Paul
Matheus, Luisa Marina
Mastronardi, Claudio
Curtidor Castellanos, Hernando
Patiño Molano, Liliana Catherine
Laissue, Paul
Matheus, Luisa Marina
Mastronardi, Claudio
Curtidor Castellanos, Hernando
Patiño Molano, Liliana Catherine
Source :
instname:Universidad del Rosario; reponame:Repositorio Institucional EdocUR; Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010 Nov;45(5):257–79.; European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L, Davies M, Anderson R, Bartlett J, Braat D, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016 May;31(5):926–37; Bilgin EM, Kovanci E. Genetics of premature ovarian failure. Curr Opin Obstet Gynecol. 2015 Jun;27(3):167–74; Luborsky JL, Meyer P, Sowers MF, Gold EB, Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition. Hum Reprod. 2003 Jan;18(1):199–206; Chang SH, Kim C-S, Lee K-S, Kim H, Yim SV, Lim YJ, et al. Premenopausal factors influencing premature ovarian failure and early menopause. Maturitas. 2007 Sep 20;58(1):19–30; Shelling A, Chapman C, Cree L. The genetics of premature ovarian failure: current perspectives. Int J Womens Health. 2015 Sep;799; Laissue P. Aetiological coding sequence variants in non-syndromic premature ovarian failure: From genetic linkage analysis to next generation sequencing. Mol Cell Endocrinol. 2015 Aug 15;411:243–57; Laissue P. The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Mol Cell Endocrinol. 2018 Jan;460:170–80; Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998 Dec;12(12):1809–17; Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004 Jul;75(1):106–11; Otsuka F, Shimasaki S. A Novel Function of Bone Morphogenetic Protein-15 in the Pituitary: Selective Synthesis and Secretion of FSH by Gonadotropes. Endocrinology. 2002 Dec;143(12):4938–41; Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8060–5; Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone Morphogenetic Protein-15 Inhibits Follicle-stimulating Hormone (FSH) Action by Suppressing FSH Receptor Expression. J Biol Chem. 2001 Apr 6;276(14):11387–92; Caixeta ES, Sutton-McDowall ML, Gilchrist RB, Thompson JG, Price CA, Machado MF, et al. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction. 2013 Jul;146(1):27–35; Su Y-Q, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2007 Nov 21;135(1):111–21; Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update. 2014 Nov 1;20(6):869–83; Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004 Feb;25(1):72–101; Hashimoto O, Moore RK, Shimasaki S. Posttranslational processing of mouse and human BMP-15: Potential implication in the determination of ovulation quota. Proc Natl Acad Sci. 2005 Apr 12;102(15):5426–31; Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci. 2013 Feb 19;110(8):E776–85; Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000 Jul;25(3):279–83; Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001 Jun;15(6):854–66; Wang B, Wen Q, Ni F, Zhou S, Wang J, Cao Y, et al. Analyses of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) mutation in Chinese women with premature ovarian failure. Clin Endocrinol (Oxf). 2010;72(1):135–6; Ledig S, Röpke A, Haeusler G, Hinney B, Wieacker P. BMP15 mutations in XX gonadal dysgenesis and premature ovarian failure. Am J Obstet Gynecol. 2008;198(1):1–5; Tiotiu D, Alvaro Mercadal B, Imbert R, Verbist J, Demeestere I, De Leener A, et al. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010;25(6):1581–7; Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, Ritvos O, Aittomaki K, et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 2006;154(5):739–44; Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L, et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006;91(5):1976–9; Dixit H, Rao LK, Padmalatha V V, Kanakavalli M, Deenadayal M, Gupta N, et al. Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet. 2006 May;119(4):408–15; Lakhal B, Laissue P, Braham R, Elghezal H, Saâd A, Fellous M, et al. A novel BMP15 variant, potentially affecting the signal peptide, in a familial case of premature ovarian failure. Clin Endocrinol (Oxf). 2009;71(5):752–3; Rossetti R, Di Pasquale E, Marozzi A, Bione S, Toniolo D, Grammatico P, et al. BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat. 2009 May;30(5):804–10; Inagaki K, Shimasaki S. Impaired production of BMP-15 and GDF-9 mature proteins derived from proproteins WITH mutations in the proregion. Mol Cell Endocrinol. 2010 Oct 26;328(1–2):1–7; Korchynskyi O, ten Dijke P. Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Id1 Promoter. J Biol Chem. 2002 Feb 15;277(7):4883–91; Park ST, Kim J. Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing. Int Neurourol J. 2016 Nov;20(Suppl 2):S76-83; Austin ED, Loyd JE. The Genetics of Pulmonary Arterial Hypertension. Circ Res. 2014 Jun 20;115(1):189–202; Erickson GF, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol. 2003 Feb 5;1:9; Snowden T, Acharya S, Butz C, Berardini M, Fishel R. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell. 2004 Aug 13;15(3):437–51; Snowden T, Shim K-SK-S, Schmutte C, Acharya S, Fishel R. hMSH4-hMSH5 Adenosine Nucleotide Processing and Interactions with Homologous Recombination Machinery. J Biol Chem. 2008 Jan 4;283(1):145–54; Wang B, Li L, Zhu Y, Zhang W, Wang X, Chen B, et al. Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing. Hum Reprod. 2017 Oct;32(10):2138–46; Najib S, Martín-Romero C, González-Yanes C, Sánchez-Margalet V. Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci. 2005 Jan;62(1):36–43; van Beek N, Klionsky DJ, Reggiori F. Genetic aberrations in macroautophagy genes leading to diseases. Biochim Biophys Acta - Mol Cell Res. 2018 May;1865(5):803–16; Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009 Jul 3;10(7):458–67; Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol. 2008;445:77–88; Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB. Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction. 2011 Jun 1;141(6):759–65; Song Z-H, Yu H-Y, Wang P, Mao G-K, Liu W-X, Li M-N, et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis. 2015 Jan 15;6(1):e1589–e1589; Haidar M, Timmerman V. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Front Mol Neurosci. 2017 May 11;10; Johnson J, Espinoza T, McGaughey RW, Rawls A, Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev. 2001 Dec;109(2):355–61; Iso T, Kedes L, Hamamori Y. HES and HERP families: Multiple effectors of the notch signaling pathway. J Cell Physiol. 2003 Mar;194(3):237–55.; Xu J, Gridley T. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol. 2013 Feb 13;11(1):13; George RM, Hahn KL, Rawls A, Viger RS, Wilson-Rawls J. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction. 2015 Oct;150(4):383–94; Radtke F, Schweisguth F, Pear W. The Notch “gospel.” EMBO Rep. 2005 Dec;6(12):1120–5; Dixit H, Rao LK, Padmalatha V, Kanakavalli M, Deenadayal M, Gupta N, et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2006;12(6):749–54; Ma L, Chen Y, Mei S, Liu C, Ma Xi, Li Y, et al. Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population. Mol Med Rep. 2015 Aug;12(2):2529–38.; Zhao H, Qin Y, Kovanci E, Simpson JL, Chen Z-J, Rajkovic A. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 2007 Nov;88(5):1474–6; Hall JE. Endocrinology of the Menopause. Endocrinol Metab Clin North Am. 2015 Sep;44(3):485–96; Beau I, Touraine P, Meduri G, Gougeon A, Desroches A, Matuchansky C, et al. A novel phenotype related to partial loss of function mutations of the follicle stimulating hormone receptor. J Clin Invest. 1998 Oct 1;102(7):1352–9; Doherty E, Pakarinen P, Tiitinen A, Kiilavuori A, Huhtaniemi I, Forrest S, et al. A Novel mutation in the FSH receptor inhibiting signal transduction and causing primary ovarian failure. J Clin Endocrinol Metab. 2002 Mar;87(3):1151–5.; Shelling AN, Burton KA, Chand AL, van Ee CC, France JT, Farquhar CM, et al. Inhibin: a candidate gene for premature ovarian failure. Hum Reprod. 2000 Dec;15(12):2644–9; de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, et al. A Family with Hypogonadotropic Hypogonadism and Mutations in the Gonadotropin-Releasing Hormone Receptor. N Engl J Med. 1997 Nov 27;337(22):1597–603; Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, Shannon M, et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol. 2003 Sep 15;162(6):1089–98; Raetzman LT, Wheeler BS, Ross SA, Thomas PQ, Camper SA. Persistent Expression of Notch2 Delays Gonadotrope Differentiation. Mol Endocrinol. 2006 Nov;20(11):2898–908.
Publication Year :
2018

Abstract

La insuficiencia ovárica primaria (IOP) es una patología frecuente que afecta del 1% al 3% de las mujeres de la población general menores de 40 años. No existen datos específicos en la población colombiana, lo cual sería un punto importante a determinar teniendo en cuenta que se ha reportado que esta prevalencia puede variar según el origen étnico de las pacientes. La IOP se caracteriza clínicamente por la ausencia (amenorrea primaria) o el cese de la ovulación durante al menos cuatro meses (amenorrea secundaria), con un aumento de los valores plasmáticos de FSH (hormona folículo estimulante). Aunque se han relacionado causas autoinmunes, metabólicas, infecciosas e iatrogénicas, en la mayoría de los casos su etiología es desconocida, lo que sugiere posibles causas genéticas. A pesar de numerosos intentos por determinar estas causas, solo algunos genes han sido relacionados funcionalmente con la etiología de esta enfermedad. En esta tesis de Doctorado se realizó la identificación y la validación de nuevas variantes y/o nuevos genes asociados a la etiología de la IOP. Este trabajo de tesis se divide en dos capítulos, en el primero se describe la identificación de variantes en el gen BMP15 y la evaluación de cómo las mutaciones en este gen contribuyen a la disfunción ovárica. Para esto se evaluó el efecto de 10 mutaciones en BMP15 respecto a la producción del péptido maduro, la activación de la señalización de la vía SMAD y la sinergia con GDF9. La genotipificación de BMP15 en 35 pacientes Colombianas permitió la identificación de una variante nueva (c.986C>G-p.Arg329His) y una variante previamente reportada (c.581T>C, p.Phe194Ser). La evaluación funcional de estas variantes, junto con otras 8 identificadas previamente, indicó que las mutaciones p.Leu148Phe, p.Phe194Ser y p.Tyr235Cys, están relacionadas con la reducción en la producción del péptido maduro. Las mutaciones p.Arg138His, p.Ala180Thr y p.Arg329His redujeron la actividad de BMP15 aproximadamente cuatro veces<br />Primary ovarian insufficiency (POI) is a frequent pathology affecting 1% - 3% of women from the general population under 40 years old. There are not specific data related Colombian population, however, this could be an interesting point to be determinate taking account the variation of POI prevalence according ethnical origin. POI is characterized by the absence (primary amenorrhea) or the cessation of ovulation (secondary amenorrhea) for at least four months, as well as high plasmatic levels of FSH (Follicle Stimulating Hormone). Autoimmune, metabolic, infectious and iatrogenic causes have been related to the disease pathogenesis. However, in the majority of cases, the aetiology remains undiscovered. Despite numerous attempts to identify these genetic causes, only a few genes have been functionally related to POI’s etiology. This Ph.D. thesis focuses on the identification and functional validation of new variants and/or new genes related to POI’s etiology. This manuscript is divided in two chapters. The first one describes the identification of new BMP15 variants and the evaluation of how these variants may contribute to ovarian dysfunction. The effect of ten BMP15 mutations in mature peptide production, activation of SMAD signaling and GDF9 synergy were assessed. The BMP15 screening on 35 Colombian patients led to the identification of a new variant (c.986C>G-p.Arg329His) and a previously reported one (c.581T>C, p.Phe194Ser) associated with POI. Assessing the expression/activity of these and other 8 BMP15 mutants allowed to describe that: (1) multiple variants, including p.Leu148Phe, p.Phe194Ser and p.Tyr235Cys reduced mature protein production; (2) other variants (p.Arg138His, p.Ala180Thr and p.Arg329His) displayed lower the activity than wild-type BMP15; and (3) some variants (p.Arg68Trp, p.Phe194Ser and p.Asn196Lys) reduced GDF9 synergy. These results showed that BMP15 mutations can disrupt ovarian function through different mechanisms. The second chapter focus

Details

Database :
OAIster
Journal :
instname:Universidad del Rosario; reponame:Repositorio Institucional EdocUR; Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010 Nov;45(5):257–79.; European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L, Davies M, Anderson R, Bartlett J, Braat D, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016 May;31(5):926–37; Bilgin EM, Kovanci E. Genetics of premature ovarian failure. Curr Opin Obstet Gynecol. 2015 Jun;27(3):167–74; Luborsky JL, Meyer P, Sowers MF, Gold EB, Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition. Hum Reprod. 2003 Jan;18(1):199–206; Chang SH, Kim C-S, Lee K-S, Kim H, Yim SV, Lim YJ, et al. Premenopausal factors influencing premature ovarian failure and early menopause. Maturitas. 2007 Sep 20;58(1):19–30; Shelling A, Chapman C, Cree L. The genetics of premature ovarian failure: current perspectives. Int J Womens Health. 2015 Sep;799; Laissue P. Aetiological coding sequence variants in non-syndromic premature ovarian failure: From genetic linkage analysis to next generation sequencing. Mol Cell Endocrinol. 2015 Aug 15;411:243–57; Laissue P. The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Mol Cell Endocrinol. 2018 Jan;460:170–80; Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998 Dec;12(12):1809–17; Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004 Jul;75(1):106–11; Otsuka F, Shimasaki S. A Novel Function of Bone Morphogenetic Protein-15 in the Pituitary: Selective Synthesis and Secretion of FSH by Gonadotropes. Endocrinology. 2002 Dec;143(12):4938–41; Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8060–5; Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone Morphogenetic Protein-15 Inhibits Follicle-stimulating Hormone (FSH) Action by Suppressing FSH Receptor Expression. J Biol Chem. 2001 Apr 6;276(14):11387–92; Caixeta ES, Sutton-McDowall ML, Gilchrist RB, Thompson JG, Price CA, Machado MF, et al. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction. 2013 Jul;146(1):27–35; Su Y-Q, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2007 Nov 21;135(1):111–21; Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update. 2014 Nov 1;20(6):869–83; Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004 Feb;25(1):72–101; Hashimoto O, Moore RK, Shimasaki S. Posttranslational processing of mouse and human BMP-15: Potential implication in the determination of ovulation quota. Proc Natl Acad Sci. 2005 Apr 12;102(15):5426–31; Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci. 2013 Feb 19;110(8):E776–85; Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000 Jul;25(3):279–83; Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001 Jun;15(6):854–66; Wang B, Wen Q, Ni F, Zhou S, Wang J, Cao Y, et al. Analyses of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) mutation in Chinese women with premature ovarian failure. Clin Endocrinol (Oxf). 2010;72(1):135–6; Ledig S, Röpke A, Haeusler G, Hinney B, Wieacker P. BMP15 mutations in XX gonadal dysgenesis and premature ovarian failure. Am J Obstet Gynecol. 2008;198(1):1–5; Tiotiu D, Alvaro Mercadal B, Imbert R, Verbist J, Demeestere I, De Leener A, et al. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010;25(6):1581–7; Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, Ritvos O, Aittomaki K, et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 2006;154(5):739–44; Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L, et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006;91(5):1976–9; Dixit H, Rao LK, Padmalatha V V, Kanakavalli M, Deenadayal M, Gupta N, et al. Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet. 2006 May;119(4):408–15; Lakhal B, Laissue P, Braham R, Elghezal H, Saâd A, Fellous M, et al. A novel BMP15 variant, potentially affecting the signal peptide, in a familial case of premature ovarian failure. Clin Endocrinol (Oxf). 2009;71(5):752–3; Rossetti R, Di Pasquale E, Marozzi A, Bione S, Toniolo D, Grammatico P, et al. BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat. 2009 May;30(5):804–10; Inagaki K, Shimasaki S. Impaired production of BMP-15 and GDF-9 mature proteins derived from proproteins WITH mutations in the proregion. Mol Cell Endocrinol. 2010 Oct 26;328(1–2):1–7; Korchynskyi O, ten Dijke P. Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Id1 Promoter. J Biol Chem. 2002 Feb 15;277(7):4883–91; Park ST, Kim J. Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing. Int Neurourol J. 2016 Nov;20(Suppl 2):S76-83; Austin ED, Loyd JE. The Genetics of Pulmonary Arterial Hypertension. Circ Res. 2014 Jun 20;115(1):189–202; Erickson GF, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol. 2003 Feb 5;1:9; Snowden T, Acharya S, Butz C, Berardini M, Fishel R. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell. 2004 Aug 13;15(3):437–51; Snowden T, Shim K-SK-S, Schmutte C, Acharya S, Fishel R. hMSH4-hMSH5 Adenosine Nucleotide Processing and Interactions with Homologous Recombination Machinery. J Biol Chem. 2008 Jan 4;283(1):145–54; Wang B, Li L, Zhu Y, Zhang W, Wang X, Chen B, et al. Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing. Hum Reprod. 2017 Oct;32(10):2138–46; Najib S, Martín-Romero C, González-Yanes C, Sánchez-Margalet V. Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci. 2005 Jan;62(1):36–43; van Beek N, Klionsky DJ, Reggiori F. Genetic aberrations in macroautophagy genes leading to diseases. Biochim Biophys Acta - Mol Cell Res. 2018 May;1865(5):803–16; Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009 Jul 3;10(7):458–67; Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol. 2008;445:77–88; Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB. Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction. 2011 Jun 1;141(6):759–65; Song Z-H, Yu H-Y, Wang P, Mao G-K, Liu W-X, Li M-N, et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis. 2015 Jan 15;6(1):e1589–e1589; Haidar M, Timmerman V. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Front Mol Neurosci. 2017 May 11;10; Johnson J, Espinoza T, McGaughey RW, Rawls A, Wilson-Rawls J. Notch pathway genes are expressed in mammalian ovarian follicles. Mech Dev. 2001 Dec;109(2):355–61; Iso T, Kedes L, Hamamori Y. HES and HERP families: Multiple effectors of the notch signaling pathway. J Cell Physiol. 2003 Mar;194(3):237–55.; Xu J, Gridley T. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol. 2013 Feb 13;11(1):13; George RM, Hahn KL, Rawls A, Viger RS, Wilson-Rawls J. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction. 2015 Oct;150(4):383–94; Radtke F, Schweisguth F, Pear W. The Notch “gospel.” EMBO Rep. 2005 Dec;6(12):1120–5; Dixit H, Rao LK, Padmalatha V, Kanakavalli M, Deenadayal M, Gupta N, et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2006;12(6):749–54; Ma L, Chen Y, Mei S, Liu C, Ma Xi, Li Y, et al. Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population. Mol Med Rep. 2015 Aug;12(2):2529–38.; Zhao H, Qin Y, Kovanci E, Simpson JL, Chen Z-J, Rajkovic A. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 2007 Nov;88(5):1474–6; Hall JE. Endocrinology of the Menopause. Endocrinol Metab Clin North Am. 2015 Sep;44(3):485–96; Beau I, Touraine P, Meduri G, Gougeon A, Desroches A, Matuchansky C, et al. A novel phenotype related to partial loss of function mutations of the follicle stimulating hormone receptor. J Clin Invest. 1998 Oct 1;102(7):1352–9; Doherty E, Pakarinen P, Tiitinen A, Kiilavuori A, Huhtaniemi I, Forrest S, et al. A Novel mutation in the FSH receptor inhibiting signal transduction and causing primary ovarian failure. J Clin Endocrinol Metab. 2002 Mar;87(3):1151–5.; Shelling AN, Burton KA, Chand AL, van Ee CC, France JT, Farquhar CM, et al. Inhibin: a candidate gene for premature ovarian failure. Hum Reprod. 2000 Dec;15(12):2644–9; de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, et al. A Family with Hypogonadotropic Hypogonadism and Mutations in the Gonadotropin-Releasing Hormone Receptor. N Engl J Med. 1997 Nov 27;337(22):1597–603; Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, Shannon M, et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol. 2003 Sep 15;162(6):1089–98; Raetzman LT, Wheeler BS, Ross SA, Thomas PQ, Camper SA. Persistent Expression of Notch2 Delays Gonadotrope Differentiation. Mol Endocrinol. 2006 Nov;20(11):2898–908.
Notes :
application/pdf, Spanish
Publication Type :
Electronic Resource
Accession number :
edsoai.on1099296709
Document Type :
Electronic Resource