Back to Search Start Over

Sunyaev-Zel'dovich Effect and X-ray Scaling Relations from Weak-Lensing Mass Calibration of 32 SPT Selected Galaxy Clusters

Authors :
Dietrich, J. P.
Bocquet, S.
Schrabback, T.
Hoekstra, H.
Grandis, S.
Mohr, J. J.
Allen, S. W.
Bayliss, M. B.
Benson, B. A.
Bleem, L. E.
Brodwin, M.
Bulbul, E.
Capasso, R.
Chiu, I.
Crawford, T. M.
Gonzalez, A. H.
de Haan, T.
Klein, M.
von der Linden, A.
Mantz, A. B.
Marrone, D. P.
McDonald, M.
Raghunathan, S.
Rapetti, D.
Reichardt, C. L.
Saro, A.
Stalder, B.
Stark, A.
Stern, C.
Stubbs, C.
Dietrich, J. P.
Bocquet, S.
Schrabback, T.
Hoekstra, H.
Grandis, S.
Mohr, J. J.
Allen, S. W.
Bayliss, M. B.
Benson, B. A.
Bleem, L. E.
Brodwin, M.
Bulbul, E.
Capasso, R.
Chiu, I.
Crawford, T. M.
Gonzalez, A. H.
de Haan, T.
Klein, M.
von der Linden, A.
Mantz, A. B.
Marrone, D. P.
McDonald, M.
Raghunathan, S.
Rapetti, D.
Reichardt, C. L.
Saro, A.
Stalder, B.
Stark, A.
Stern, C.
Stubbs, C.
Publication Year :
2017

Abstract

Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters at redshifts $0.29 \leq z \leq 0.61$ and combine them with previously reported space-based observations of 13 galaxy clusters at redshifts $0.576 \leq z \leq 1.132$ to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas mass \mgas, and \yx, the product of \mgas\ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 5.6% in cluster mass (68% confidence). Our constraints on the mass--X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass--SZE scaling relation are consistent with the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.<br />Comment: accepted for publication in MNRAS, 41 pages, 34 figures

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1098130010
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1093.mnras.sty3088