Back to Search
Start Over
Detecting Relativistic X-ray Jets in High-Redshift Quasars
- Publication Year :
- 2016
-
Abstract
- We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift (z >= 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 < z < 2.9) quasars. The dataset includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p-value upper bounds on the significance that an X- ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional 6 marginally. We also find residual emission in the cores of 3 quasars and in the background of 1 quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions is due to the IC/CMB rather than the synchrotron process, or that high redshift jets are qualitatively different.<br />Comment: 42 pages, 14 figures, submitted to ApJ
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1098112540
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.3847.1538-4357.833.1.123