Back to Search
Start Over
Plasma and Magnetic Field Characteristics of Solar Coronal Mass Ejections in Relation to Geomagnetic Storm Intensity and Variability
- Publication Year :
- 2015
-
Abstract
- The largest geomagnetic storms of solar cycle 24 so far occurred on 2015 March 17 and June 22 with $D_{\rm st}$ minima of $-223$ and $-195$ nT, respectively. Both of the geomagnetic storms show a multi-step development. We examine the plasma and magnetic field characteristics of the driving coronal mass ejections (CMEs) in connection with the development of the geomagnetic storms. A particular effort is to reconstruct the in situ structure using a Grad-Shafranov technique and compare the reconstruction results with solar observations, which gives a larger spatial perspective of the source conditions than one-dimensional in situ measurements. Key results are obtained concerning how the plasma and magnetic field characteristics of CMEs control the geomagnetic storm intensity and variability: (1) a sheath-ejecta-ejecta mechanism and a sheath-sheath-ejecta scenario are proposed for the multi-step development of the 2015 March 17 and June 22 geomagnetic storms, respectively; (2) two contrasting cases of how the CME flux-rope characteristics generate intense geomagnetic storms are found, which indicates that a southward flux-rope orientation is not a necessity for a strong geomagnetic storm; and (3) the unexpected 2015 March 17 intense geomagnetic storm resulted from the interaction between two successive CMEs plus the compression by a high-speed stream from behind, which is essentially the "perfect storm" scenario proposed by \citet[][i.e., a combination of circumstances results in an event of unusual magnitude]{liu14a}, so the "perfect storm" scenario may not be as rare as the phrase implies.<br />Comment: 15 pages, 5 figures, accepted for publication in ApJ Letters
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1098091622
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1088.2041-8205.809.2.L34