Back to Search Start Over

Modelling forest decline using SMOS soil moisture and vegetation optical depth

Authors :
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. CTE-CRAE - Grup de Recerca en Ciències i Tecnologies de l'Espai
Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
Chaparro Danon, David
Piles Guillem, Maria
Martínez Vilalta, Jordi
Vall-Llossera Ferran, Mercedes Magdalena
Vayreda, Jordi
Banque, Mireia
Camps Carmona, Adriano José
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. CTE-CRAE - Grup de Recerca en Ciències i Tecnologies de l'Espai
Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
Chaparro Danon, David
Piles Guillem, Maria
Martínez Vilalta, Jordi
Vall-Llossera Ferran, Mercedes Magdalena
Vayreda, Jordi
Banque, Mireia
Camps Carmona, Adriano José
Publication Year :
2018

Abstract

Global change is increasing the risk of forest decline worldwide, impacting carbon and water cycles. Hence, there is an urgent need for predicting forest decline occurrence. To that purpose, this study links forest decline events in Catalonia, detected by the DEBOSCAT forest monitoring program, with information from the Soil Moisture and Ocean Salinity (SMOS) satellite. Firstly, this study reviews the role of the SMOS soil moisture in a previous forest decline episode occurred in 2012, where the authors concluded that dry soils increased the probability of observing decline in broadleaved forests. Secondly, the present study detects that forest decline in 2012 and 2016 was linked to very dry soil conditions (generally with SM<;0.06 m 3 ·m -3 ). A similar analysis is proposed using SMOS Vegetation Optical Depth (VOD) data, which is a proxy of vegetation hydric status. Results and preliminary models will be presented at IGARSS 2018.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
4 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1090515513
Document Type :
Electronic Resource