Back to Search Start Over

Crystallization, phase evolution and ferroelectric properties of sol-gel-synthesized Ba(Ti0.8Zr0.2)O3- x(Ba0.7Ca0.3)TiO3 thin films

Authors :
Wang, Zeng-mei
Zhao, Kuan
Guo, Xin-li
Sun, Wei
Jiang, Hua-long
Han, Xue-qin
Tao, Xu-tang
Cheng, Zhen-xiang
Zhao, Hong-yang
Kimura, Hideo
Yuan, Guo-liang
Yin, Jiang
Liu, Zhi-guo
Wang, Zeng-mei
Zhao, Kuan
Guo, Xin-li
Sun, Wei
Jiang, Hua-long
Han, Xue-qin
Tao, Xu-tang
Cheng, Zhen-xiang
Zhao, Hong-yang
Kimura, Hideo
Yuan, Guo-liang
Yin, Jiang
Liu, Zhi-guo
Source :
Australian Institute for Innovative Materials - Papers
Publication Year :
2013

Abstract

A lead-free piezoelectric material with ultra-high properties, Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3(BZT-xBCT) nanocrystals was synthesized via a sol-gel method, and the corresponding thin films were also deposited on Pt/Ti/SiO2/Si substrates by a spin-coating approach. The BZT-xBCT thin film exhibited a high remnant polarization of 22.15 mC cm2 with a large coercive field of 68.06 kV cm1. The resultant gel is calcined at various elevated temperatures and studied with FTIR/XRD/Raman/DSC-TGA/AFM/SEM techniques for gel composition, crystallization, phase transition, thermochemistry and the morphology of the film. Although the room temperature crystal structure of the BZT-xBCT nanocrystals appears to be a standard perovskite structure by conventional X-ray diffraction (XRD), Raman spectroscopy demonstrates the presence of non-centrosymmetric regions arising from the off-centering of the titanium (zirconium) atoms. The Raman spectra findings demonstrate the degree by which the tetragonal phase grows with the increase of calcining temperature in BZT-0.5BCT, and the characteristic ferroelectric-ferroelectric phase transition in BZT-xBCT while going through the MPB process. The structural and constituent evolution for the conversion process from gel to ceramic, as well as the formation mechanism of the BZT-0.5BCT crystallite, were also elucidated.

Details

Database :
OAIster
Journal :
Australian Institute for Innovative Materials - Papers
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1066724761
Document Type :
Electronic Resource