Back to Search Start Over

Neural network modelling of Abbott-Firestone roughness parameters in honing processes

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. TECNOFAB - Grup de Recerca en Tecnologies de Fabricació
Universitat Politècnica de Catalunya. ISSET - Integrated Smart Sensors and Health Technologies
Sivatte Adroer, Mauricio
Buj Corral, Irene
Llanas Parra, Francesc Xavier
Universitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. TECNOFAB - Grup de Recerca en Tecnologies de Fabricació
Universitat Politècnica de Catalunya. ISSET - Integrated Smart Sensors and Health Technologies
Sivatte Adroer, Mauricio
Buj Corral, Irene
Llanas Parra, Francesc Xavier
Publication Year :
2017

Abstract

In present study, three roughness parameters defined in the Abbott-Firestone or bearing area curve, Rk, Rpk and Rvk, were modelled for rough honing processes by means of artificial neural networks (ANN). Input variables were grain size and density of abrasive, pressure of abrasive stones on the workpiece's surface, tangential or rotation speed of the workpiece and linear speed of the honing head. Two strategies were considered, either use of one network for modelling the three parameters at the same time or use of three networks, one for each parameter. Overall best neural network consists of three networks, one for each roughness parameter, with one hidden layer having 25, nine and five neurons for Rk, Rpk and Rvk respectively. However, use of one network for the three roughness parameters would allow addressing an indirect model. In this case, best solution corresponds to two hidden layers having 26 and 11 neurons.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
19 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1037158396
Document Type :
Electronic Resource