Back to Search Start Over

Ocean Floor Observation and Bathymetry System (OFOBS): A new Towed Camera/Sonar System for Deep-Sea Habitat Surveys

Authors :
Purser, Autun
Marcon, Yann
Dreutter, Simon
Hoge, Ulrich
Sablotny, Burkhard
Hehemann, Laura
Lemburg, Johannes
Dorschel, Boris
Biebow, Harald
Boetius, Antje
Purser, Autun
Marcon, Yann
Dreutter, Simon
Hoge, Ulrich
Sablotny, Burkhard
Hehemann, Laura
Lemburg, Johannes
Dorschel, Boris
Biebow, Harald
Boetius, Antje
Source :
EPIC3IEEE Journal of Oceanic Engineering, IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, ISSN: 0364-9059
Publication Year :
2018

Abstract

Towed camera systems are commonly used to collect photo and video images of the deep seafloor for a wide variety of purposes, from pure exploratory research to the development of management plans. Ongoing technological developments are increasing the quantity and quality of data collected from the deep seafloor. Despite these improvements, the area of seafloor, which towed systems can survey, optically remains limited by the rapid attenuation of visible wavelengths within water. We present an overview of a new towed camera platform integrating additional acoustical devices: the ocean floor observation and bathymetry system (OFOBS). The towed system maintains continuous direct communication via fiber optic cable with a support vessel, operational at depths up to 6000 m. In addition to collecting seafloor photo and video data, OFOBS gathers sidescan data over a 100-m swath width. OFOBS functionality is further augmented by a forward looking sonar, used to aid in hazard avoidance and real-time course correction. Data collected during the first field deployments of OFOBS, at a range of seamounts on the Langseth Ridge/Gakkel Ridge intersection (86° N, 61° E) in the high Arctic in September 2016, are presented to demonstrate the functionality of the system. Collected from a location with near continuous ice cover, this explanatory data set highlights the advantages of the system for deep-sea survey work in environments currently difficult to access for the majority of subsurface research platforms.

Details

Database :
OAIster
Journal :
EPIC3IEEE Journal of Oceanic Engineering, IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, ISSN: 0364-9059
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1032341675
Document Type :
Electronic Resource