Back to Search Start Over

Experimental and computational magnetic resonance studies of selected rare earth and bismuth complexes

Authors :
Antzutkin, O. (Oleg N.)
Lantto, P. (Perttu)
Gowda, V. (Vasantha)
Antzutkin, O. (Oleg N.)
Lantto, P. (Perttu)
Gowda, V. (Vasantha)
Publication Year :
2017

Abstract

The rare-earth elements (REEs) and bismuth, being classified as the ‘most critical raw materials’ (European Raw Materials Initiatives, 2017), have a high economic importance to the EU combined with a high relative supply risk. REEs are highly important for the evolving technologies such as clean-energy applications, high-technology components, rechargeable batteries, permanent magnets, electric and hybrid vehicles, and phosphors monitors. This scientific research work aims at building a fundamental knowledge base concerning the electronic/molecular structure and properties of rare-earth element (REE) and bismuth complexes with dithiocarbamate (DTC) and 1,10-phenanthroline (PHEN) by employing state-of-the-art experimental techniques such as nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction (XRD) techniques together with ab initio quantum mechanical computational methods. This combination of methods has played a vital role in analysing the direct and significant effect of the heavy metal ions on the structural and magnetic resonance properties of the complexes, thereby, providing a framework of structure elucidation. This is of special importance for REEs, which are known to exhibit similar chemical and physical properties. The objectives of the work involve i) a systematic investigation of series of REE(III) as well as bismuth(III) complexes to get a profound understanding of the structure-properties relationship and ii) to find an appropriate theoretical modelling and NMR calculation methods, especially, for heavy metal systems in molecular and/or solid-state. This information can later be used in surface interaction studies of REE/bismuth minerals with DTC as well as in design and development of novel ligands for extraction/separation of metal ions. The REE(III) and bismuth(III) complexes with DTC and PHEN ligands have all provided a unique NMR fingerprint of the metal centre both in liquid and solid phase. The solid-state ¹³C and ¹⁵N NMR

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1030622533
Document Type :
Electronic Resource