Back to Search
Start Over
A Transient Rise in Free Mg 2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation
A Transient Rise in Free Mg 2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation
- Publication Year :
- 2018
-
Abstract
- For cell division, negatively charged chromatin, in which nucleosome fibers (10 nm fibers) are irregularly folded [ 1–5 ], must be condensed into chromosomes and segregated. While condensin and other proteins are critical for organizing chromatin into the appropriate chromosome shape [ 6–17 ], free divalent cations such as Mg2+ and Ca2+, which condense chromatin or chromosomes in vitro [ 18–28 ], have long been considered important, especially for local condensation, because the nucleosome fiber has a net negative charge and is by itself stretched like “beads on a string” by electrostatic repulsion. For further folding, other positively charged factors are required to decrease the charge and repulsion [ 29 ]. However, technical limitations to measure intracellular free divalent cations, but not total cations [ 30 ], especially Mg2+, have prevented us from elucidating their function. Here, we developed a Förster resonance energy transfer (FRET)-based Mg2+ indicator that monitors free Mg2+ dynamics throughout the cell cycle. By combining this indicator with Ca2+ [ 31 ] and adenosine triphosphate (ATP) [ 32 ] indicators, we demonstrate that the levels of free Mg2+, but not Ca2+, increase during mitosis. The Mg2+ increase is coupled with a decrease in ATP, which is normally bound to Mg2+ in the cell [ 33 ]. ATP inhibited Mg2+-dependent chromatin condensation in vitro. Chelating Mg2+ induced mitotic cell arrest and chromosome decondensation, while ATP reduction had the opposite effect. Our results suggest that ATP-bound Mg2+ is released by ATP hydrolysis and contributes to mitotic chromosome condensation with increased rigidity, suggesting a novel regulatory mechanism for higher-order chromatin organization by the intracellular Mg2+-ATP balance.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1024079117
- Document Type :
- Electronic Resource