Back to Search Start Over

In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign

Authors :
O'Shea, Sebastian J.
Choularton, Thomas W.
Flynn, Michael
Bower, Keith N.
Gallagher, Martin
Crosier, Jonathan
Williams, Paul
Crawford, Ian
Fleming, Zoë L.
Listowski, Constantino
Kirchgaessner, Amelie
Ladkin, Russell S.
Lachlan-Cope, Thomas
O'Shea, Sebastian J.
Choularton, Thomas W.
Flynn, Michael
Bower, Keith N.
Gallagher, Martin
Crosier, Jonathan
Williams, Paul
Crawford, Ian
Fleming, Zoë L.
Listowski, Constantino
Kirchgaessner, Amelie
Ladkin, Russell S.
Lachlan-Cope, Thomas
Publication Year :
2017

Abstract

During austral summer 2015, the Microphysics of Antarctic Clouds (MAC) field campaign collected unique and detailed airborne and ground-based in situ measurements of cloud and aerosol properties over coastal Antarctica and the Weddell Sea. This paper presents the first results from the experiment and discusses the key processes important in this region, which is critical to predicting future climate change. The sampling was predominantly of stratus clouds, at temperatures between −20 and 0 °C. These clouds were dominated by supercooled liquid water droplets, which had a median concentration of 113 cm−3 and an interquartile range of 86 cm−3. Both cloud liquid water content and effective radius increased closer to cloud top. The cloud droplet effective radius increased from 4 ± 2 µm near cloud base to 8 ± 3 µm near cloud top. Cloud ice particle concentrations were highly variable with the ice tending to occur in small, isolated patches. Below approximately 1000 m, glaciated cloud regions were more common at higher temperatures; however, the clouds were still predominantly liquid throughout. When ice was present at temperatures higher than −10 °C, secondary ice production most likely through the Hallett–Mossop mechanism led to ice concentrations 1 to 3 orders of magnitude higher than the number predicted by commonly used primary ice nucleation parameterisations. The drivers of the ice crystal variability are investigated. No clear dependence on the droplet size distribution was found. The source of first ice in the clouds remains uncertain but may include contributions from biogenic particles, blowing snow or other surface ice production mechanisms. The concentration of large aerosols (diameters 0.5 to 1.6 µm) decreased with altitude and were depleted in air masses that originated over the Antarctic continent compared to those more heavily influenced by the Southern Ocean and sea ice regions. The dominant aerosol in the region was hygroscopic in nature, with the hygros

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1016149143
Document Type :
Electronic Resource