Back to Search Start Over

Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke

Authors :
Vlaar, M.P. (author)
Solis Escalante, T. (author)
Dewald, J.P.A. (author)
Van Wegen, Erwin E H (author)
Schouten, A.C. (author)
Kwakkel, G. (author)
van der Helm, F.C.T. (author)
Vlaar, M.P. (author)
Solis Escalante, T. (author)
Dewald, J.P.A. (author)
Van Wegen, Erwin E H (author)
Schouten, A.C. (author)
Kwakkel, G. (author)
van der Helm, F.C.T. (author)
Publication Year :
2017

Abstract

Background: Cortical damage after stroke can drastically impair sensory and motor function of the upper limb, affecting the execution of activities of daily living and quality of life. Motor impairment after stroke has been thoroughly studied, however sensory impairment and its relation to movement control has received less attention. Integrity of the somatosensory system is essential for feedback control of human movement, and compromised integrity due to stroke has been linked to sensory impairment. Methods: The goal of this study is to assess the integrity of the somatosensory system in individuals with chronic hemiparetic stroke with different levels of sensory impairment, through a combination of robotic joint manipulation and high-density electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) stimulation while challenging task execution. The integrity of the somatosensory system was evaluated during passive and active tasks, defined as ‘relaxed wrist’ and ‘maintaining 20% maximum wrist flexion’, respectively. The evoked cortical responses in the EEG were quantified using the power in the averaged responses and their signal-to-noise ratio. Results: Thirty individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this study. Participants with stroke were classified as having severe, mild, or no sensory impairment, based on the Erasmus modification of the Nottingham Sensory Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical responses in unimpaired and chronic stroke participants with mild and no sensory impairment. In participants with severe sensory impairment the cortical responses were strongly reduced in amplitude, which related to anatomical damage. Under active conditions, participants with mild sensory impairment showed reduced responses com<br />Biomechatronics & Human-Machine Control

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1008831055
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1186.s12984-017-0240-3