Back to Search Start Over

Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption

Authors :
University of Helsinki, Lammi Biological Station
University of Helsinki, Department of Environmental Sciences
Taipale, S. J.
Vuorio, K.
Strandberg, U.
Kahilainen, K. K.
Jarvinen, M.
Hiltunen, M.
Peltomaa, E.
Kankaala, P.
University of Helsinki, Lammi Biological Station
University of Helsinki, Department of Environmental Sciences
Taipale, S. J.
Vuorio, K.
Strandberg, U.
Kahilainen, K. K.
Jarvinen, M.
Hiltunen, M.
Peltomaa, E.
Kankaala, P.
Source :
Taipale , S J , Vuorio , K , Strandberg , U , Kahilainen , K K , Jarvinen , M , Hiltunen , M , Peltomaa , E & Kankaala , P 2016 , ' Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption ' Environment International , vol 96 , pp. 156-166 . DOI: 10.1016/j.envint.2016.08.018
Publication Year :
2016

Abstract

Fish are an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for birds, mammals and humans. In aquatic food webs, these highly unsaturated fatty acids (HUFA) are essential for many physiological processes and mainly synthetized by distinct phytoplankton taxa. Consumers at different trophic levels obtain essential fatty acids from their diet because they cannot produce these sufficiently de novo. Here, we evaluated how the increase in phosphorus concentration (eutrophication) or terrestrial organic matter inputs (brownification) change EPA and DHA content in the phytoplankton. Then, we evaluated whether these changes can be seen in the EPA and DHA content of piscivorous European perch (Perca fluviatilis), which is a widely distributed species and commonly consumed by humans. Data from 713 lakes showed statistically significant differences in the abundance of EPA- and DHA-synthesizing phytoplankton as well as in the concentrations and content of these essential fatty acids among oligo-mesotrophic, eutrophic and dystrophic lakes. The EPA and DHA content of phytoplankton biomass (mg HUFA g(-1)) was significantly lower in the eutrophic lakes than in the oligo-mesotrophic or dystrophic lakes. We found a strong significant correlation between the DHA content in the muscle of piscivorous perch and phytoplankton DHA content (r = 0.85) as well with the contribution of DHA-synthesizing phytoplankton taxa (r = 0.83). Among all DHA-synthesizing phytoplankton this correlation was the strongest with the dinoflagellates (r = 0.74) and chrysophytes (r = 0.70). Accordingly, the EPA + DHA content of perch muscle decreased with increasing total phosphorus (r(2) = 0.80) and dissolved organic carbon concentration (r(2) = 0.83) in the lakes. Our results suggest that although eutrophication generally increase biomass production across different trophic levels, the high proportion of low-quality primary producers reduce EPA and DHA content in the food web up to

Details

Database :
OAIster
Journal :
Taipale , S J , Vuorio , K , Strandberg , U , Kahilainen , K K , Jarvinen , M , Hiltunen , M , Peltomaa , E & Kankaala , P 2016 , ' Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption ' Environment International , vol 96 , pp. 156-166 . DOI: 10.1016/j.envint.2016.08.018
Notes :
11, Taipale , S J , Vuorio , K , Strandberg , U , Kahilainen , K K , Jarvinen , M , Hiltunen , M , Peltomaa , E & Kankaala , P 2016 , ' Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption ' Environment International , vol 96 , pp. 156-166 . DOI: 10.1016/j.envint.2016.08.018, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1003272937
Document Type :
Electronic Resource