Back to Search
Start Over
Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2
- Publication Year :
- 2017
-
Abstract
- The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8 - 2.1 GPa and 1, 280 - 1, 290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile - peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn973563966
- Document Type :
- Electronic Resource