Back to Search Start Over

Big data - modelling of midges in Europa using machine learning techniques and satellite imagery

Authors :
Cuellar, Ana Carolina
Kjær, Lene Jung
Skovgaard, Henrik
Nielsen, Søren Archim
Stockmarr, Anders
Anderson, G.
Lindström, Anders
Chirico, J.
Lilja, T.
Lühken, R.
Steinke, S.
Kiel, E.
Larska, Magdalena
Hamnes, S. I.
Sviland, S.
Hopp, Petter
Brugger, K.
Rubel, F.
Balenghien, T.
Garros, C.
Rakotoarivony, I.
Allene, X.
Lhoir, J.
Delecolle, J. C.
Mathieu, B.
Delecolle, D.
Setier-Rio, M. L.
Venail, R.
Scheid, B.
Miranda Chueca, M. A.
Barcelo Segui, C.
Lucientes, J.
Estrada, R.
Wesley, Tack
Mathis, A.
Bødker, Rene
Cuellar, Ana Carolina
Kjær, Lene Jung
Skovgaard, Henrik
Nielsen, Søren Archim
Stockmarr, Anders
Anderson, G.
Lindström, Anders
Chirico, J.
Lilja, T.
Lühken, R.
Steinke, S.
Kiel, E.
Larska, Magdalena
Hamnes, S. I.
Sviland, S.
Hopp, Petter
Brugger, K.
Rubel, F.
Balenghien, T.
Garros, C.
Rakotoarivony, I.
Allene, X.
Lhoir, J.
Delecolle, J. C.
Mathieu, B.
Delecolle, D.
Setier-Rio, M. L.
Venail, R.
Scheid, B.
Miranda Chueca, M. A.
Barcelo Segui, C.
Lucientes, J.
Estrada, R.
Wesley, Tack
Mathis, A.
Bødker, Rene
Source :
Cuellar , A C , Kjær , L J , Skovgaard , H , Nielsen , S A , Stockmarr , A , Anderson , G , Lindström , A , Chirico , J , Lilja , T , Lühken , R , Steinke , S , Kiel , E , Larska , M , Hamnes , S I , Sviland , S , Hopp , P , Brugger , K , Rubel , F , Balenghien , T , Garros , C , Rakotoarivony , I , Allene , X , Lhoir , J , Delecolle , J C , Mathieu , B , Delecolle , D , Setier-Rio , M L , Venail , R , Scheid , B , Miranda Chueca , M A , Barcelo Segui , C , Lucientes , J , Estrada , R , Wesley , T , Mathis , A & Bødker , R 2017 , Big data - modelling of midges in Europa using machine learning techniques and satellite imagery . in NKVet Symposium 2017 - abstract book . Oslo, Norway , NKVet Symposium 2017 , Oslo , Norway , 11/01/2017 .
Publication Year :
2017

Abstract

Biting midges (Diptera, Ceratopogonidae) of the genus Culicoides are important vectors of pathogens causing diseases in free living and production animals and can lead to large economic losses in many European countries. In Europe, Culicoides imicola and the Obsoletus group are considered to be the main vectors of bluetongue virus that mostly affects ruminants such as cattle and sheep. Spatio-temporal modelling of vector distribution and abundance allows us to identify high risk areas for virus transmission and can aid in applying effective surveillance and control measures. We used presence-absence and monthly abundance data of Culicoides from 1005 sites across 9 countries (Spain, France, Denmark, Poland, Switzerland, Austria, Poland, Sweden, Norway) collected between the years 2007 and 2013. The dataset included information on the vector species abundance (number of specimens caught per night), GPS coordinates of each trap, start and end dates of trapping. We used 120 environmental predictor variables together with Random Forest machine learning algorithms to predict the overall species distribution (probability of occurrence) and monthly abundance in Europe. We generated maps for every month of the year, to visualize the abundance of C. imicola and Obsoletus group in Europe as well as distribution maps showing the probability of occurrence. We were able to create predictive maps of both Culicoides sp. occurrence and abundance using Random Forest models, and although the variance was large, the predicted abundance values for each site had a positive correlation with the observed abundance. We found relatively large spatial variations in probability of occurrence and abundance for both C. imicola and the Obsoletus group. For C. imicola probability of occurrence and abundance was higher in southern Spain, where as the Obsoletus group had higher probability of occurrence and abundance in central and northern Europe such as France and Germany. Temp

Details

Database :
OAIster
Journal :
Cuellar , A C , Kjær , L J , Skovgaard , H , Nielsen , S A , Stockmarr , A , Anderson , G , Lindström , A , Chirico , J , Lilja , T , Lühken , R , Steinke , S , Kiel , E , Larska , M , Hamnes , S I , Sviland , S , Hopp , P , Brugger , K , Rubel , F , Balenghien , T , Garros , C , Rakotoarivony , I , Allene , X , Lhoir , J , Delecolle , J C , Mathieu , B , Delecolle , D , Setier-Rio , M L , Venail , R , Scheid , B , Miranda Chueca , M A , Barcelo Segui , C , Lucientes , J , Estrada , R , Wesley , T , Mathis , A & Bødker , R 2017 , Big data - modelling of midges in Europa using machine learning techniques and satellite imagery . in NKVet Symposium 2017 - abstract book . Oslo, Norway , NKVet Symposium 2017 , Oslo , Norway , 11/01/2017 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn970407431
Document Type :
Electronic Resource