Back to Search Start Over

Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries

Authors :
Noerochim, Lukman
Wang, Jia-Zhao
Chou, Shulei
Wexler, David
Noerochim, Lukman
Wang, Jia-Zhao
Chou, Shulei
Wexler, David
Source :
Australian Institute for Innovative Materials - Papers
Publication Year :
2012

Abstract

Free-standingsingle-walledcarbonnanotube/SnO2 (SWCNT/SnO2) anodepaper was prepared by vacuum filtration of SWCNT/SnO2 hybrid material which was synthesized by the polyol method. From field emission scanning electron microscopy and transmission electron microscopy, the CNTs form a three-dimensional nanoporous network, in which ultra-fine SnO2 nanoparticles, which had crystallite sizes of less than 5 nm, were distributed, predominately as groups of nanoparticles on the surfaces of singlewalled CNT bundles. Electrochemical measurements demonstrated that the anodepaper with 34 wt.% SnO2 had excellent cyclic retention, with the high specific capacity of 454 mAh g−1 beyond 100 cycles at a current density of 25 mA g−1, much higher than that of the corresponding pristine CNT paper. The SWCNTs could act as a flexible mechanical support for strain release, offering an efficient electrically conducting channel, while the nanosized SnO2 provides the high capacity. The SWCNT/SnO2 flexible electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal decrease in the conductivity of the cell. The electrochemical response is maintained in the initial and further cycling process. Such capabilities demonstrate that this model hold great promise for applications requiring flexible and bendable Li-ion batteries.

Details

Database :
OAIster
Journal :
Australian Institute for Innovative Materials - Papers
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn964020921
Document Type :
Electronic Resource