Back to Search Start Over

Cotangent models of integrable systems

Authors :
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Miranda Galcerán, Eva
Kiesenhofer, Anna
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Miranda Galcerán, Eva
Kiesenhofer, Anna
Publication Year :
2016

Abstract

We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville–Mineur–Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839–1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66–85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn959070574
Document Type :
Electronic Resource