Back to Search Start Over

The toxicology and physiology of waterborne and dietary silver exposure in freshwater fish

Authors :
Galvez, Fernando
Wood, Chris M.
Biology
Galvez, Fernando
Wood, Chris M.
Biology
Publication Year :
1999

Abstract

Water quality criteria regulating silver discharge to the environment have been heavily scrutinized by both the photographic industry and the regulatory community over the last decade. In the United States, there is now a general consensus that the present regulatory framework, which is based on work done in the 1970's, fails to appropriately assess the impact of silver in the environment. Nonetheless, other countries have begun developing water quality criteria for silver which are in many cases based on this same old toxicological information. The present thesis addresses the need for new information, and specifically characterizes the toxicological, physiological and biochemical responses of freshwater fish to waterborne and dietary exposures of silver. This thesis provides concrete evidence that acute waterborne toxicity in juvenile rainbow trout is produced by the free Ag+ ion, yielding 4 to 7-day LC50 values ranging from 3.1 to 5.5 μg/L Ag+ . In comparison, LC50 values varied by as much as 30-fold during toxicity tests in which complexing agents such as chloride and dissolved organic carbon were manipulated. Using these data, together with other recently published results from physiologically-based studies, a new acute toxicity model has been developed within a Biotic Ligand Modeling (BLM) framework where the geochemistry of the receiving water is taken into account. This new acute toxicity model is unique in that it relates toxicity to a prediction of the binding of Ag+ to toxic sites on the gill, rather than to a prediction of total gill silver load. This distinction is important because the total bioaccumulated silver load appears to be unrelated to the acute toxic response. Silver accumulated in the liver is shown to bind to metallothionein within the cell, possibly explaining why silver can accumulate to high levels in the liver during waterborne silver exposure with no apparent toxicity to the fish. Chronic exposure to low levels of silver results in<br />Doctor of Philosophy (PhD)

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn957443326
Document Type :
Electronic Resource