Back to Search Start Over

Joint intensity-and-point based registration of free-hand B-mode ultrasound and MRI of the carotid artery

Authors :
Carvalho, D.D.B. (Diego)
Klein, S. (Stefan)
Akkus, Z. (Zeynettin)
Nouwens- van Dijk, A.C. (Anouk)
Tang, H. (Hui)
Selwaness, M. (Mariana)
Schinkel, A.F.L. (Arend)
Bosch, J.G. (Hans)
Lugt, A. (Aad) van der
Niessen, W.J. (Wiro)
Carvalho, D.D.B. (Diego)
Klein, S. (Stefan)
Akkus, Z. (Zeynettin)
Nouwens- van Dijk, A.C. (Anouk)
Tang, H. (Hui)
Selwaness, M. (Mariana)
Schinkel, A.F.L. (Arend)
Bosch, J.G. (Hans)
Lugt, A. (Aad) van der
Niessen, W.J. (Wiro)
Publication Year :
2014

Abstract

Purpose: To introduce a semiautomatic algorithm to perform the registration of free-hand B-Mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid artery. Methods: The authors' approach combines geometrical features and intensity information. The only user interaction consists of placing three seed points in US and MRI. First, the lumen centerlines are used as landmarks for point based registration. Subsequently, in a joint optimization the distance between centerlines and the dissimilarity of the image intensities is minimized. Evaluation is performed in left and right carotids from six healthy volunteers and five patients with atherosclerosis. For the validation, the authors measure the Dice similarity coefficient (DSC) and the mean surface distance (MSD) between carotid lumen segmentations in US and MRI after registration. The effect of several design parameters on the registration accuracy is investigated by an exhaustive search on a training set of five volunteers and three patients. The optimum configuration is validated on the remaining images of one volunteer and two patients. Results: On the training set, the authors achieve an average DSC of 0.74 and a MSD of 0.66 mm on volunteer data. For the patient data, the authors obtain a DSC of 0.77 and a MSD of 0.69 mm. In the independent set composed of patient and volunteer data, the DSC is 0.69 and the MSD is 0.87 mm. The experiments with different design parameters show that nonrigid registration outperforms rigid registration, and that the combination of intensity and point information is superior to approaches that use intensity or points only. Conclusions: The proposed method achieves an accurate registration of US and MRI, and may thus enable multimodal analysis of the carotid plaque.

Details

Database :
OAIster
Notes :
Medical Physics vol. 41 no. 5, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn957103714
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1118.1.4870383