Back to Search Start Over

Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

Authors :
Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
Godoy Gallardo, Maria
Guillem Martí, Jordi
Sevilla Sánchez, Pablo
Manero Planella, José María
Gil Mur, Francisco Javier
Rodríguez Rius, Daniel
Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
Godoy Gallardo, Maria
Guillem Martí, Jordi
Sevilla Sánchez, Pablo
Manero Planella, José María
Gil Mur, Francisco Javier
Rodríguez Rius, Daniel
Publication Year :
2016

Abstract

Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria-cell co-cultures.; Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. (C) 2015 Elsevier B.V. All rights reserved.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
9 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn947258861
Document Type :
Electronic Resource