Back to Search
Start Over
Discovery, Characterisation and Engineering of Non-Ribosomal Peptide Synthetases and Phosphopantetheinyl Transferase Enzymes : a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Biotechnology
- Publication Year :
- 2016
-
Abstract
- Non-ribosomal peptide synthetases (NRPSs) are multi-modular biosynthetic enzymes that are responsible for the production of many bioactive secondary metabolites produced by microorganisms. They are activated by phosphopantetheinyl transferase (PPTase) enzymes, which attach an essential prosthetic group to a specific site within a "carrier protein" (CP) domain that is an integral part of each NRPS module. Of particular importance in this work is the NRPS BpsA, which produces a blue pigment called indigoidine; but only when BpsA has first been activated by a PPTase. BpsA can be used as a reporter for PPTase activity, to identify PPTases and/or measure their activity. Several CP-substituted BpsA variants were used, in order to study and identify PPTases which may recognise different CP domains. The first part of the research described in this thesis examined the features of foreign CP interactions within BpsA that made these functional substitutions possible. Two key residues, the +4 and +24 positions relative to an invariant serine, were found to be highly important; with appropriate substitutions at these positions yielding active CP-substituted variants. Wild type BpsA and the CP-substituted variants were then used as the basis of a screen to discover new PPTase genes, and associated natural product biosynthetic genes, from metagenomic libraries. The vast majority of bacteria that produce bioactive secondary metabolites are unable to be cultured under laboratory conditions; screening metagenomic libraries is a way to access this untapped biodiversity in order to discover new natural products. Two environmental DNA libraries were screened, and PPTase genes were identified via their ability to activate BpsA, giving rise to blue colonies in high throughput agar plate screens. This screen proved to be a powerful enrichment strategy with almost half of the novel 21 PPTase genes recovered also linked to biosynthetic gene clusters.
Details
- Database :
- OAIster
- Notes :
- Victoria University of Wellington. School of Biological Sciences., Victoria University of Wellington, degree granting institution.
- Accession number :
- edsoai.ocn943826440