Back to Search Start Over

Posture transition identification on PD patients through a SVM-based technique and a single waist-worn accelerometer

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. CETpD -Centre d'Estudis Tecnològics per a l'Atenció a la Dependència i la Vida Autònoma
Rodríguez Martín, Daniel Manuel
Samà Monsonís, Albert
Pérez López, Carlos
Cabestany Moncusí, Joan
Català Mallofré, Andreu
Rodríguez Molinero, Alejandro
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. CETpD -Centre d'Estudis Tecnològics per a l'Atenció a la Dependència i la Vida Autònoma
Rodríguez Martín, Daniel Manuel
Samà Monsonís, Albert
Pérez López, Carlos
Cabestany Moncusí, Joan
Català Mallofré, Andreu
Rodríguez Molinero, Alejandro
Publication Year :
2015

Abstract

Identification of activities of daily living is essential in order to evaluate the quality of life both in the elderly and patients with mobility problems. Posture transitions (PT) are one of the most mechanically demanding activities in daily life and,thus, they can lead to falls in patients with mobility problems. This paper deals with PT recognition in Parkinson’s Disease (PD) patients by means of a triaxial accelerometer situated between the anterior and the left lateral part of the waist. Since sensor’s orientation is susceptible to change during long monitoring periods, a hierarchical structure of classifiers is proposed in order to identify PT while allowing such orientation changes. Results are presented based on signals obtained from 20 PD patients and 67 healthy people who wore an inertial sensor on different positions among the anterior and the left lateral part of the waist. The algorithm has been compared to a previous approach in which only the anterior-lateral location was analyzed improving the sensitivity while preserving specificity. Moreover, different supervised machine l earning techniques have been evaluated in distinguishing PT. Results show that the location of the sensor slightly affects method’s performance and, furthermore, PD motor state does not alter its accuracy.<br />Peer Reviewed<br />Postprint (author’s final draft)

Details

Database :
OAIster
Notes :
10 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn926956845
Document Type :
Electronic Resource