Back to Search Start Over

Interacting Dark Resonances with Plasmonic Meta-Molecules

Authors :
CALIFORNIA UNIV BERKELEY NANOSCALE SCIENCE AND ENGINEERING CENTER
Jha, Pankaj K
Mrejen, Michael
Kim, Jeongmin
Wu, Chihhui
Yin, Xiaobo
Wang, Yuan
Zhang, Xiang
CALIFORNIA UNIV BERKELEY NANOSCALE SCIENCE AND ENGINEERING CENTER
Jha, Pankaj K
Mrejen, Michael
Kim, Jeongmin
Wu, Chihhui
Yin, Xiaobo
Wang, Yuan
Zhang, Xiang
Source :
DTIC
Publication Year :
2014

Abstract

Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We theoretically demonstrate that these plasmonic meta-molecules exhibit sub-natural spectral response, analogous to conventional atomic four-level configuration, by manipulating the evanescent coupling between the bright and dark elements (plasmonic atoms). Using cascaded coupling, we show nearly 4-fold reduction in linewidth of the hybridized resonance compared to a resonantly excited single bright plasmonic atom with same absorbance. In addition, we engineered the geometry of the meta-molecules to realize efficient intramolecular excitation transfer with nearly 80%, on resonant excitation, of the total absorption being localized at the second dark plasmonic atom. An analytical description of the spectral response of the structure is presented with full electrodynamics simulations to corroborate our results. Such multilayered meta-molecules can bring a new dimension to higher quality factor plasmonic resonance efficient excitation transfer, wavelength demultiplexing, and enhanced non-linearity at nanoscale.<br />Published in Applied Physics Letters, v105 article 111109, 2014.

Details

Database :
OAIster
Journal :
DTIC
Notes :
text/html, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn913597525
Document Type :
Electronic Resource