Back to Search Start Over

Local Convertibility and the Quantum Simulation of Edge States in Many-Body Systems

Authors :
Massachusetts Institute of Technology. Department of Physics
Franchini, Fabio
Cui, Jian
Amico, Luigi
Fan, Heng
Gu, Mile
Korepin, Vladimir
Kwek, Leong Chuan
Vedral, Vlatko
Massachusetts Institute of Technology. Department of Physics
Franchini, Fabio
Cui, Jian
Amico, Luigi
Fan, Heng
Gu, Mile
Korepin, Vladimir
Kwek, Leong Chuan
Vedral, Vlatko
Source :
American Physical Society
Publication Year :
2014

Abstract

In some many-body systems, certain ground-state entanglement (Rényi) entropies increase even as the correlation length decreases. This entanglement nonmonotonicity is a potential indicator of nonclassicality. In this work, we demonstrate that such a phenomenon, known as lack of local convertibility, is due to the edge-state (de)construction occurring in the system. To this end, we employ the example of the Ising chain, displaying an order-disorder quantum phase transition. Employing both analytical and numerical methods, we compute entanglement entropies for various system bipartitions (A|B) and consider ground states with and without Majorana edge states. We find that the thermal ground states, enjoying the Hamiltonian symmetries, show lack of local convertibility if either A or B is smaller than, or of the order of, the correlation length. In contrast, the ordered (symmetry-breaking) ground state is always locally convertible. The edge-state behavior explains all these results and could disclose a paradigm to understand local convertibility in other quantum phases of matter. The connection we establish between convertibility and nonlocal, quantum correlations provides a clear criterion of which features a universal quantum simulator should possess to outperform a classical machine.<br />Seventh Framework Programme (European Commission) (Marie Curie International Outgoing Fellowship Grant PIOF-PHY-276093)

Details

Database :
OAIster
Journal :
American Physical Society
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn896819609
Document Type :
Electronic Resource