Back to Search Start Over

Gauss-Manin systems, Brieskorn lattices and Frobenius structures (II)

Authors :
Laboratoire Jean Alexandre Dieudonné (JAD) ; CNRS - Université Nice Sophia Antipolis (UNS)
Centre de Mathématiques Laurent Schwartz (CMLS-EcolePolytechnique) ; CNRS - Polytechnique - X
C. Hertling & M. Marcolli
Douai, Antoine
Sabbah, Claude
Laboratoire Jean Alexandre Dieudonné (JAD) ; CNRS - Université Nice Sophia Antipolis (UNS)
Centre de Mathématiques Laurent Schwartz (CMLS-EcolePolytechnique) ; CNRS - Polytechnique - X
C. Hertling & M. Marcolli
Douai, Antoine
Sabbah, Claude
Source :
Frobenius manifolds; C. Hertling & M. Marcolli. Frobenius manifolds, Dec 2001, Bonn, Germany. Vieweg, 36, pp.1-18, 2004, Aspects Math

Abstract

22 pages, 3 figures, LaTeX + smf classes available at http://smf.emath.fr/Publications/Formats/index.html Typos corrected<br />International audience<br />We give an explicit description of the canonical Frobenius structure attached (by the results of the first part of this article) to the polynomial f(u_0,...,u_n)=w_0u_0+...+w_nu_n restricted to the torus u_0^{w_0}...u_n^{w_n}=1, for any family of positive integers w_0,...,w_n such that gcd(w_0,...,w_n)=1.

Details

Database :
OAIster
Journal :
Frobenius manifolds; C. Hertling & M. Marcolli. Frobenius manifolds, Dec 2001, Bonn, Germany. Vieweg, 36, pp.1-18, 2004, Aspects Math
Notes :
Bonn, Germany, Frobenius manifolds, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn892971729
Document Type :
Electronic Resource