Back to Search Start Over

Samples from the Jurassic ocean crust beneath Gran Canaria, La Palma and Lanzarote (Canary Islands)

Authors :
Schmincke, Hans-Ulrich
Klügel, Andreas
Hansteen, Thor H.
Hoernle, Kaj
van den Bogaard, Paul
Schmincke, Hans-Ulrich
Klügel, Andreas
Hansteen, Thor H.
Hoernle, Kaj
van den Bogaard, Paul
Publication Year :
1998

Abstract

Gabbro and minor metabasalt fragments of MORB composition were found on three of the seven Canary Islands. On Gran Canaria, they occur as metamorphosed (greenschist facies) metabasalt and metagabbro clasts in Miocene fanglomerates and sandstones overlying the shield basalts. On Lanzarote and La Palma, MORB gabbros occur as xenoliths in Pleistocene and historic basanite scoria cones and lava flows. The MORB xenoliths are interpreted as fragments of layers 2 and 3 of the underlying Mesozoic oceanic crust, based on mineral compositions (An-rich plagioclase, Ti- and Al-poor clinopyroxene, ± orthopyroxene ± olivine), depleted major and trace element signatures, and Jurassic ages (ca. 180 Ma) determined on single primary plagioclase and secondary amphibole crystals using the 40Ar/39Ar laser technique. The Lanzarote gabbros are very mafic (mg# 87 to 89 in clinopyroxene), moderately deformed, and highly depleted. Gran Canaria gabbros are more evolved (mg# 69 to 83 in clinopyroxene) and texturally mostly isotropic. La Palma MORB gabbros have a range of compositions (mg# 68 to 83 in clinopyroxene), some rocks being strongly metasomatized by interaction with basanite magma. The occurrence of MORB fragments on Lanzarote provides definite evidence that oceanic crust beneath the Canary Island archipelago continues at least as far east as the eastern Canary Islands. We postulate that MORB gabbros on Lanzarote which are commonly associated with peridotite xenoliths, represent the base of oceanic layer 3 where gabbros and peridotites were possibly tectonically interleaved. Such tectonic mixing would explain the enigmatic seismic velocities in this area. Gabbro xenoliths from La Palma were derived from within layer 3, probably from wall rock close to magma reservoirs emplaced during the Pleistocene/Holocene growth of La Palma. The Gran Canaria xenoliths are interpreted to represent the metamorphosed layer 2 and upper layer 3. The abundance of lower crustal xenoliths emphasizes the im

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn864379732
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.S0012-821X(98)00168-X