Back to Search
Start Over
Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity
- Source :
- Ade , P A R , Aghanim , N , Armitage-Caplan , C , Arnaud , M , Ashdown , M , Atrio-Barandela , F , Aumont , J , Baccigalupi , C , Banday , A J , Barreiro , R B , Bartlett , J G , Bartolo , N , Battaner , E , Benabed , K , Benoît , A , Benoit-Lévy , A , Bernard , J -P , Bersanelli , M , Bielewicz , P , Bobin , J , Bock , J , Bonaldi , A , Bonavera , L , Bond , J R , Borrill , J , Bouchet , F R , Bridges , M , Bucher , M , Burigana , C , Butler , R , Cardoso , J -F , Catalano , A , Challinor , A , Chamballu , A , Chiang , L-Y , Chiang , H C , Christensen , P R , Church , S , Clements , D L , Colombi , S , Colombo , L P L , Couchot , F , Coulais , A , Crill , B P , Curto , A , Cuttaia , F , Davies , R D , Davis , R , de Bernardis , P , de Rosa , A , de Zotti , G , Delabrouille , J , Delouis , J -M , Désert , F -X , Diego , J M , Dole , H , Donzelli , S , Doré , O , Douspis , M , Ducout , A , Dunkley , J , Dupac , X , Efstathiou , G , Elsner , F , Enßlin , T A , Eriksen , H K , Fergusson , J , Finelli , F , Forni , O , Frailis , M , Franceschi , E , Galeotta , S , Ganga , K , Giard , M , Giraud-Héraud , Y , González-Nuevo , J , Górski , K M , Gratton , S , Gregorio , A , Gruppuso , A , Hansen , F K , Hanson , D , Harrison , D , Heavens , A , Henrot-Versillé , S , Hernández-Monteagudo , C , Herranz , D , Hildebrandt , S , Hivon , E , Hobson , M , Holmes , W A , Hornstrup , A , Hovest , W , Huffenberger , K M , Jaffe , T R , Jaffe , A H , Jones , W C , Juvela , M , Keihänen , E , Keskitalo , R , Kisner , T S , Knoche , J , Kunz , M , Kurki-Suonio , H , Lacasa , F , Lagache , G , Lähteenmäki , A , Lamarre , J -M , Lasenby , A , Laureijs , R J , Lawrence , C R , Leahy , J P , Leonardi , R , Lesgourgues , J , Lewis , A , Liguori , M , Lilje , P B , Linden-Vørnle , M , López-Caniego , M , Lubin , P M , Macías-Pérez , J F , Maffei , B , Maino , D , Mandolesi , N , Mangilli , A , Marinucci , D , Maris , M , Marshall , D J , Martin , P G , Martínez-González , E , Masi , S , Mata
- Publication Year :
- 2013
-
Abstract
- The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordiallocal, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local/NL = 2.7± 5.8, f equil/NL = -42 ± 75, and f ortho/NL = -25 ± 39( 68% CL statistical). Non-Gaussianity is detected in the data; using skew-C∫ statistics we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the ΛCDM scenario. The results are based on comprehensive crossvalidationof these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensivesuite of tests, and are confirmed by skew-C∫, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shapeamplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints onearly-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Daviesvacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs ≥0.02 (95% CL), in an eective fieldtheory parametrization, and the curvaton decay fraction rD ≥0.15 (95% CL). The Planck data significantly limit the viable parameter space of theekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model τNL < 2800 (95% CL). Taken together, these constraintsrepresent the highe
Details
- Database :
- OAIster
- Journal :
- Ade , P A R , Aghanim , N , Armitage-Caplan , C , Arnaud , M , Ashdown , M , Atrio-Barandela , F , Aumont , J , Baccigalupi , C , Banday , A J , Barreiro , R B , Bartlett , J G , Bartolo , N , Battaner , E , Benabed , K , Benoît , A , Benoit-Lévy , A , Bernard , J -P , Bersanelli , M , Bielewicz , P , Bobin , J , Bock , J , Bonaldi , A , Bonavera , L , Bond , J R , Borrill , J , Bouchet , F R , Bridges , M , Bucher , M , Burigana , C , Butler , R , Cardoso , J -F , Catalano , A , Challinor , A , Chamballu , A , Chiang , L-Y , Chiang , H C , Christensen , P R , Church , S , Clements , D L , Colombi , S , Colombo , L P L , Couchot , F , Coulais , A , Crill , B P , Curto , A , Cuttaia , F , Davies , R D , Davis , R , de Bernardis , P , de Rosa , A , de Zotti , G , Delabrouille , J , Delouis , J -M , Désert , F -X , Diego , J M , Dole , H , Donzelli , S , Doré , O , Douspis , M , Ducout , A , Dunkley , J , Dupac , X , Efstathiou , G , Elsner , F , Enßlin , T A , Eriksen , H K , Fergusson , J , Finelli , F , Forni , O , Frailis , M , Franceschi , E , Galeotta , S , Ganga , K , Giard , M , Giraud-Héraud , Y , González-Nuevo , J , Górski , K M , Gratton , S , Gregorio , A , Gruppuso , A , Hansen , F K , Hanson , D , Harrison , D , Heavens , A , Henrot-Versillé , S , Hernández-Monteagudo , C , Herranz , D , Hildebrandt , S , Hivon , E , Hobson , M , Holmes , W A , Hornstrup , A , Hovest , W , Huffenberger , K M , Jaffe , T R , Jaffe , A H , Jones , W C , Juvela , M , Keihänen , E , Keskitalo , R , Kisner , T S , Knoche , J , Kunz , M , Kurki-Suonio , H , Lacasa , F , Lagache , G , Lähteenmäki , A , Lamarre , J -M , Lasenby , A , Laureijs , R J , Lawrence , C R , Leahy , J P , Leonardi , R , Lesgourgues , J , Lewis , A , Liguori , M , Lilje , P B , Linden-Vørnle , M , López-Caniego , M , Lubin , P M , Macías-Pérez , J F , Maffei , B , Maino , D , Mandolesi , N , Mangilli , A , Marinucci , D , Maris , M , Marshall , D J , Martin , P G , Martínez-González , E , Masi , S , Mata
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn854772362
- Document Type :
- Electronic Resource