Back to Search
Start Over
Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser
- Source :
- DTIC
- Publication Year :
- 2011
-
Abstract
- Efficient, low-threshold and compact semiconductor laser sources are under investigation for many applications in high-speed communications, information processing and optical interconnects. The best edge-emitting and vertical-cavity surface-emitting lasers have thresholds on the order of 100 microA (refs 1,2), but dissipate too much power to be practical for many applications, particularly optical interconnects. Optically pumped photonic-crystal nanocavity lasers represent the state of the art in low-threshold lasers; however, to be practical, techniques to electrically pump these structures must be developed. Here, we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p-i-n junction formed by ion implantation. Continuous-wave lasing is observed at temperatures up to 150 K. Thresholds of only 181 nA at 50 K and 287 nA at 150 K are observed-the lowest thresholds ever observed in any type of electrically pumped laser.<br />Published in Nature Photonics, v5 p297-300, May 2011. Prepared in cooperation with Lawrence Berkeley National Laboratory, and with University of California, Berkeley.
Details
- Database :
- OAIster
- Journal :
- DTIC
- Notes :
- text/html, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn832120980
- Document Type :
- Electronic Resource