Back to Search
Start Over
Privacy-Preserving Collaborative Sequential Pattern Mining
- Source :
- DTIC
- Publication Year :
- 2004
-
Abstract
- In the modern business world, collaborative data mining becomes especially important because of the mutual benefit it brings to the collaborators. During the collaboration, each party of the collaboration needs to share its data with other parties. If the parties don't care about their data privacy, the collaboration can be easily achieved. However, if the parties don't want to disclose their private data to each other, can they still achieve the collaboration? To use the existing data mining algorithms, all parties need to send their data to a trusted central place to conduct the mining. However in situations with privacy concerns, parties may not trust anyone, including a third party. Generic solutions for any kind of secure collaborative computing exist in the literature. However, none of the proposed generic solutions is practical in handling large-scale data sets because of the prohibitive extra cost in protecting data privacy. Therefore, practical solutions need to be developed. This need underlies the rationale for our research.
Details
- Database :
- OAIster
- Journal :
- DTIC
- Notes :
- text/html, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn831978306
- Document Type :
- Electronic Resource