Back to Search Start Over

Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy of GNNQQNY Nanocrystals and Amyloid Fibrils

Authors :
Massachusetts Institute of Technology. Department of Chemistry
Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Griffin, Robert G.
Debelouchina, Galia Tzvetanova
Bayro, Marvin J.
Barnes, Alexander
Griffin, Robert Guy
van der Wel, Patrick C. A.
Caporini, Marc A.
Rosay, Melanie
Maas, Werner
Massachusetts Institute of Technology. Department of Chemistry
Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Griffin, Robert G.
Debelouchina, Galia Tzvetanova
Bayro, Marvin J.
Barnes, Alexander
Griffin, Robert Guy
van der Wel, Patrick C. A.
Caporini, Marc A.
Rosay, Melanie
Maas, Werner
Source :
Prof. Griffin via Erja Kajosalo
Publication Year :
2012

Abstract

Dynamic nuclear polarization (DNP) utilizes the inherently larger polarization of electrons to enhance the sensitivity of conventional solid-state NMR experiments at low temperature. Recent advances in instrumentation development and sample preparation have transformed this field and have opened up new opportunities for its application to biological systems. Here, we present DNP-enhanced [superscript 13]C–[superscript 13]C and [superscript 15]N–[superscript 13]C correlation experiments on GNNQQNY nanocrystals and amyloid fibrils acquired at 9.4 T and 100 K and demonstrate that DNP can be used to obtain assignments and site-specific structural information very efficiently. We investigate the influence of temperature on the resolution, molecular conformation, structural integrity and dynamics in these two systems. In addition, we assess the low-temperature performance of two commonly used solid-state NMR experiments, proton-driven spin diffusion (PDSD) and transferred echo double resonance (TEDOR), and discuss their potential as tools for measurement of structurally relevant distances at low temperature in combination with DNP.<br />National Institutes of Health (U.S.) (Grant EB002804)<br />National Institutes of Health (U.S.) (Grant EB003151)<br />National Institutes of Health (U.S.) (Grant EB002026)

Details

Database :
OAIster
Journal :
Prof. Griffin via Erja Kajosalo
Notes :
application/pdf, en_US
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn819524899
Document Type :
Electronic Resource