Back to Search
Start Over
Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy of GNNQQNY Nanocrystals and Amyloid Fibrils
- Source :
- Prof. Griffin via Erja Kajosalo
- Publication Year :
- 2012
-
Abstract
- Dynamic nuclear polarization (DNP) utilizes the inherently larger polarization of electrons to enhance the sensitivity of conventional solid-state NMR experiments at low temperature. Recent advances in instrumentation development and sample preparation have transformed this field and have opened up new opportunities for its application to biological systems. Here, we present DNP-enhanced [superscript 13]C–[superscript 13]C and [superscript 15]N–[superscript 13]C correlation experiments on GNNQQNY nanocrystals and amyloid fibrils acquired at 9.4 T and 100 K and demonstrate that DNP can be used to obtain assignments and site-specific structural information very efficiently. We investigate the influence of temperature on the resolution, molecular conformation, structural integrity and dynamics in these two systems. In addition, we assess the low-temperature performance of two commonly used solid-state NMR experiments, proton-driven spin diffusion (PDSD) and transferred echo double resonance (TEDOR), and discuss their potential as tools for measurement of structurally relevant distances at low temperature in combination with DNP.<br />National Institutes of Health (U.S.) (Grant EB002804)<br />National Institutes of Health (U.S.) (Grant EB003151)<br />National Institutes of Health (U.S.) (Grant EB002026)
Details
- Database :
- OAIster
- Journal :
- Prof. Griffin via Erja Kajosalo
- Notes :
- application/pdf, en_US
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn819524899
- Document Type :
- Electronic Resource