Back to Search
Start Over
FMOS near-IR spectroscopy of Herschel selected galaxies: star formation rates, metallicity and dust attenuation at z~1
- Publication Year :
- 2012
-
Abstract
- We investigate the properties (e.g. star formation rate, dust attentuation, stellar mass and metallicity) of a sample of infrared luminous galaxies at z \sim 1 via near-IR spectroscopy with Subaru-FMOS. Our sample consists of Herschel SPIRE and Spitzer MIPS selected sources in the COSMOS field with photometric redshifts in the range 0.7 < z-phot < 1.8, which have been targeted in 2 pointings (0.5 sq. deg.) with FMOS. We find a modest success rate for emission line detections, with candidate H{\alpha} emission lines detected for 57 of 168 SPIRE sources (34 per cent). By stacking the near-IR spectra we directly measure the mean Balmer decrement for the H{\alpha} and H{\beta} lines, finding a value of <E(B-V)> = 0.51\pm0.27 for <LIR> = 10^12 Lsol sources at <z> = 1.36. By comparing star formation rates estimated from the IR and from the dust uncorrected H{\alpha} line we find a strong relationship between dust attenuation and star formation rate. This relation is broadly consistent with that previously seen in star-forming galaxies at z ~ 0.1. Finally, we investigate the metallicity via the N2 ratio, finding that z ~ 1 IR-selected sources are indistinguishable from the local mass-metallicity relation. We also find a strong correlation between dust attentuation and metallicity, with the most metal-rich IR-sources experiencing the largest levels of dust attenuation.<br />Comment: 13 pages, 7 figures, MNRAS accepted
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn816436075
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1111.j.1365-2966.2012.21777.x