Back to Search
Start Over
Clefted Equilibrium Shapes of Superpressure Balloon Structures
- Publication Year :
- 2012
-
Abstract
- This thesis presents a numerical and analytical study of the clefted equilibrium shape of superpressure balloon structures. Lobed superpressure balloons have shown a tendency to deploy into unexpected asymmetric shapes, hence their design has to strike a balance between the lower stresses achieved by increasing lobing and the risk of incomplete deployment. Extensive clefting is a regular feature of balloons that are incompletely inflated, and is regularly seen during launch and ascent. Our particular interest in the research is in clefts that remain once a balloon has reached its float altitude and is fully pressurized. A simplified simulation technique for orthotropic viscoelastic membranes is presented in the thesis. Wrinkling is detected by a combined stress-strain criterion and an iterative scheme searches for the wrinkle angle using a pseudoelastic material stiffness matrix based on a nonlinear viscoelastic constitutive model. This simplified model has been implemented in ABAQUS/Explicit and is able to compute the behavior of a membrane structure by superposition of a small number of response increments. The model has been tested against a published solution for a time-independent isotropic membrane under simple shear and also against experimental results on StratoFilm 420 under simple shear. A fully three-dimensional finite element model of balloon structures incorporating wrinkling and frictionless contact, able to simulate the shapes taken up by lobed superpressure balloons during the final stages of their ascent has been established. Two different methods have been considered to predict the clefts: (i) deflation and inflation method and (ii) constraint shift method. In method (i), the starting configuration is obtained by deflating an initially symmetric balloon subject to uniform pressure. The deflation simulation is continued until the differential pressure at the bottom of the balloon has become negative, at which point the balloon is ex
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn803933351
- Document Type :
- Electronic Resource