Back to Search
Start Over
c-Jun N-terminal kinase 2 deficiency protects against hypercholesterolemia-induced endothelial dysfunction and oxidative stress
- Source :
- Osto, E; Matter, C M; Kouroedov, A; Malinski, T; Bachschmid, M; Camici, G G; Kilic, U; Stallmach, T; Boren, J; Iliceto, S; Lüscher, T F; Cosentino, F (2008). c-Jun N-terminal kinase 2 deficiency protects against hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Circulation, 118(20):2073-2080.
- Publication Year :
- 2008
-
Abstract
- BACKGROUND: Hypercholesterolemia-induced endothelial dysfunction due to excessive production of reactive oxygen species is a major trigger of atherogenesis. The c-Jun-N-terminal kinases (JNKs) are activated by oxidative stress and play a key role in atherogenesis and inflammation. We investigated whether JNK2 deletion protects from hypercholesterolemia-induced endothelial dysfunction and oxidative stress. METHODS AND RESULTS: Male JNK2 knockout (JNK2(-/-)) and wild-type (WT) mice (8 weeks old) were fed either a high-cholesterol diet (HCD; 1.25% total cholesterol) or a normal diet for 14 weeks. Aortic lysates of WT mice fed a HCD showed an increase in JNK phosphorylation compared with WT mice fed a normal diet (P<0.05). Endothelium-dependent relaxations to acetylcholine were impaired in WT HCD mice (P<0.05 versus WT normal diet). In contrast, JNK2(-/-) HCD mice did not exhibit endothelial dysfunction (96+/-5% maximal relaxation in response to acetylcholine; P<0.05 versus WT HCD). Endothelium-independent relaxations were identical in all groups. A hypercholesterolemia-induced decrease in nitric oxide (NO) release of endothelial cells was found in WT but not in JNK2(-/-) mice. In parallel, endothelial NO synthase expression was upregulated only in JNK2(-/-) HCD animals, whereas the expression of antioxidant defense systems such as extracellular superoxide dismutase and manganese superoxide dismutase was decreased in WT but not in JNK2(-/-) HCD mice. In contrast to JNK2(-/-) mice, WT HCD displayed an increase in O(2)(-) and ONOO(-) concentrations as well as nitrotyrosine staining and peroxidation. CONCLUSIONS: JNK2 plays a critical role as a mediator of hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Thus, JNK2 may provide a novel target for prevention of vascular disease and atherosclerosis.
Details
- Database :
- OAIster
- Journal :
- Osto, E; Matter, C M; Kouroedov, A; Malinski, T; Bachschmid, M; Camici, G G; Kilic, U; Stallmach, T; Boren, J; Iliceto, S; Lüscher, T F; Cosentino, F (2008). c-Jun N-terminal kinase 2 deficiency protects against hypercholesterolemia-induced endothelial dysfunction and oxidative stress. Circulation, 118(20):2073-2080.
- Notes :
- application/pdf, info:doi/10.5167/uzh-11304, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn797149557
- Document Type :
- Electronic Resource